Searched for: subject%3A%22Vehicle%255C%252Bdynamics%22
(21 - 40 of 49)

Pages

document
Zhang, Boyang (author), Sun, Xiuxia (author), Lv, Maolong (author), Liu, Shuguang (author), Li, Le (author)
In contrast with most existing results concerning unmanned aerial vehicles (UAVs) wherein material points or only attitude/longitudinal dynamics are considered, this article proposes a distributed fixed-time fault-tolerant control methodology for networked fixed-wing UAVs whose dynamics are six-degree-of-freedom with twelf-state-variables...
journal article 2022
document
Liu, Di (author), Besselink, Bart (author), Baldi, S. (author), Yu, Wenwu (author), Trentelman, Harry L. (author)
Despite the progress in the field of longitudinal formations of automated vehicles, only recently an interpretation of longitudinal platooning has been given in the framework of disturbance decoupling, i.e. the problem of making a controlled output independent of a disturbance. The appealing feature of this interpretation is that the...
journal article 2022
document
Zhang, Boyang (author), Sun, Xiuxia (author), Lv, Maolong (author), Liu, Shuguang (author)
Compared with most existing results concerning unmanned aerial vehicles (UAVs) wherein two-degree or only attitude/longitudinal dynamics are considered, this paper proposes an event-based fault-tolerant coordinated control (FTC) for multiple fixed-wing UAVs such that the consensus tracking of velocity and attitude is achieved in the presence...
journal article 2022
document
de Gelder, E. (author), Paardekooper, Jan Pieter (author), Khabbaz Saberi, Arash (author), Elrofai, Hala (author), Camp, Olaf op den (author), Kraines, Steven (author), Ploeg, Jeroen (author), De Schutter, B.H.K. (author)
The development of new assessment methods for the performance of automated vehicles is essential to enable the deployment of automated driving technologies, due to the complex operational domain of automated vehicles. One contributing method is scenario-based assessment in which test cases are derived from real-world road traffic scenarios...
journal article 2022
document
Li, D. (author), De Schutter, B.H.K. (author)
Data-driven control without using mathematical models is a promising research direction for urban traffic control due to the massive amounts of traffic data generated every day. This article proposes a novel distributed model-free adaptive predictive control (D-MFAPC) approach for multiregion urban traffic networks. More specifically, the...
journal article 2022
document
Baldi, S. (author), Roy, Spandan (author), Yang, Kang (author), Liu, Di (author)
Effective design of autopilots for fixed-wing unmanned aerial vehicles (UAVs) is still a great challenge, due to unmodeled effects and uncertainties that these vehicles exhibit during flight. Unmodeled effects and uncertainties comprise longitudinal/lateral cross-couplings, as well as poor knowledge of equilibrium points (trimming points) of...
journal article 2022
document
Rios Lazcano, A.M. (author), Niu, Tenghao (author), Carrera Akutain, Xabier (author), Cole, David (author), Shyrokau, B. (author)
Advanced Driver Assistance Systems (ADAS) aim to increase safety and reduce mental workload. However, the gap in the understanding of the closed-loop driver-vehicle interaction often leads to reduced user acceptance. In this study, an optimal torque control law is calculated online in the Model Predictive Control (MPC) framework to guarantee...
journal article 2021
document
Roy, Spandan (author), Baldi, S. (author), Li, Peng (author), Narayanan, Viswa (author)
Artificial-delay control is a method in which state and input measurements collected at an immediate past time instant (i.e. artificially delayed) are used to compensate the uncertain dynamics affecting the system at the current time. This work formulates an artificial-delay control method with adaptive gains in the presence of nonlinear ...
journal article 2021
document
de Groot, O.M. (author), Ferreira de Brito, B.F. (author), Ferranti, L. (author), Gavrila, D. (author), Alonso-Mora, J. (author)
We present an optimization-based method to plan the motion of an autonomous robot under the uncertainties associated with dynamic obstacles, such as humans. Our method bounds the marginal risk of collisions at each point in time by incorporating chance constraints into the planning problem. This problem is not suitable for online optimization...
journal article 2021
document
Pool, E.A.I. (author), Kooij, J.F.P. (author), Gavrila, D. (author)
This paper compares two models for context-based path prediction of objects with switching dynamics: a Dynamic Bayesian Network (DBN) and a Recurrent Neural Network (RNN). These models are instances of two larger model categories, distinguished by whether expert knowledge is explicitly crafted into the state representation (and thus is...
journal article 2021
document
Liu, Di (author), Baldi, S. (author), Jain, V. (author), Yu, Wenwu (author), Frasca, Paolo (author)
Recently proposed adaptive platooning strategies for connected automated vehicles are able to cope with uncertain vehicle parameters (uncertain driveline time constants), but can handle only acyclic graphs like look-ahead graphs. This prevents from enhancing platooning protocols with synchronized merging maneuvers, where cyclic communication...
journal article 2021
document
Ferreira de Brito, B.F. (author), Everett, Michael (author), How, Jonathan Patrick (author), Alonso-Mora, J. (author)
Robotic navigation in environments shared with other robots or humans remains challenging because the intentions of the surrounding agents are not directly observable and the environment conditions are continuously changing. Local trajectory optimization methods, such as model predictive control (MPC), can deal with those changes but require...
journal article 2021
document
Chatrath, Karan (author), Zheng, Y. (author), Shyrokau, B. (author)
Advanced passenger vehicles are complex dynamic systems that are equipped with several actuators, possibly including differential braking, active steering, and semi-active or active suspensions. The simultaneous use of several actuators for integrated vehicle motion control has been a topic of great interest in literature. To facilitate this, a...
journal article 2020
document
Bruni, S. (author), Meijaard, J.P. (author), Rill, G. (author), Schwab, A.L. (author)
A review of the current use of multibody dynamics methods in the analysis of the dynamics of vehicles is given. Railway vehicle dynamics as well as road vehicle dynamics are considered, where for the latter the dynamics of cars and trucks and the dynamics of single-track vehicles, in particular motorcycles and bicycles, are reviewed....
journal article 2020
document
Zheng, Huarong (author), Jin, Chen (author), Luo, Xiling (author), Negenborn, R.R. (author), Wang, Yuexuan (author)
The demand for transport between terminals within port areas, known as inter terminal transport (ITT), is increasing. This paper proposes a dynamic rolling horizon scheduling strategy for ITT using waterborne Autonomous Guided Vessels (waterborne AGVs). The strategy is dynamic in that it can handle the dynamically arriving ITT requests and...
conference paper 2020
document
Zheng, Huarong (author), Wu, Jun (author), Wu, Weimin (author), Negenborn, R.R. (author)
The rapidly developing computing and communication technologies improve the autonomy of individual vehicles on the one hand and facilitate the coordination among vehicles on the other. In the context of dynamic speed management, this study considers a platoon of intelligent vehicles that are required to maintain desired inter-vehicle spaces and...
journal article 2019
document
van der El, Kasper (author), Pool, D.M. (author), van Paassen, M.M. (author), Mulder, Max (author)
Novel driver support systems potentially enhance road safety by cooperating with the human driver. To optimize the design of emerging steering support systems, a profound understanding of driver steering behavior is required. This article proposes a new theory of driver steering, which unifies visual perception and control models. The theory...
journal article 2019
document
Barendswaard, S. (author), Pool, D.M. (author), van Paassen, M.M. (author), Mulder, Max (author)
Vehicle control tasks require simultaneous control of multiple degrees-of-freedom. Most multi-axis human-control modeling is limited to the modeling of multiple fully independent single axes. This paper contributes to the understanding of multi-axis control behavior and draws a more realistic and complete picture of dual-axis manual control....
journal article 2019
document
Drop, F.M. (author), Pool, D.M. (author), van Paassen, M.M. (author), Mulder, Max (author), Bulthoff, Heinrich H. (author)
The human controller (HC) in manual control of a dynamical system often follows a visible and predictable reference path (target). The HC can adopt a control strategy combining closed-loop feedback and an open-loop feedforward response. The effects of the target signal waveform shape and the system dynamics on the human feedforward dynamics...
journal article 2018
document
Schwarting, Wilko (author), Alonso-Mora, J. (author), Paull, Liam (author), Karaman, Sertac (author), Rus, Daniela (author)
High-end vehicles are already equipped with safety systems, such as assistive braking and automatic lane following, enhancing vehicle safety. Yet, these current solutions can only help in low-complexity driving situations. In this paper, we introduce a parallel autonomy, or shared control, framework that computes safe trajectories for an...
journal article 2017
Searched for: subject%3A%22Vehicle%255C%252Bdynamics%22
(21 - 40 of 49)

Pages