Searched for: subject%3A%22strain%255C+localization%255C+and%255C+softening%22
(1 - 3 of 3)
document
Lloberas-Valls, O. (author)
Computational material design is progressively gaining momentum in the engineering world. Recent breakthroughs in high performance computing and emerging multiscale algorithms have facilitated the simulation of materials at different scales of observation. In particular, the multiscale study of failure phenomena becomes crucial to assess the...
doctoral thesis 2013
document
Lloberas Valls, O. (author), Everdij, F.P.X. (author), Rixen, D.J. (author), Simone, A. (author), Sluys, L.J. (author)
The multiscale framework presented in [1, 2] is assessed in this contribution for a study of random heterogeneous materials. Results are compared to direct numerical simulations (DNS) and the sensitivity to user-defined parameters such as the domain decomposition type and initial coarse scale resolution is reported. The parallel performance of...
conference paper 2013
document
Lloberas Valls, O. (author), Rixen, D.J. (author), Simone, A. (author), Sluys, L.J. (author)
In this contribution we describe a methodology for the multiscale analysis of heterogeneous quasi-brittle materials. The algorithm is based on the finite element tearing and interconnecting FETI [1] method cast in a non-linear setting. Adaptive multiscale analysis is accounted for with the use of selective refinement at domains that undergo...
conference paper 2011