ZG

Zhan Gao

2 records found

Graph convolutional neural networks (GCNNs) are nonlinear processing tools to learn representations from network data. A key property of GCNNs is their stability to graph perturbations. Current analysis considers deterministic perturbations but fails to provide relevant insights ...
Stochastic graph neural networks (SGNNs) are information processing architectures that can learn representations from data over random graphs. SGNNs are trained with respect to the expected performance, but this training comes with no guarantee about the deviation of particular o ...