Objective: To evaluate 1) the relationship between the knee contact force (KCF) and knee adduction and flexion moments (KAM and KFM) during normal gait in people with medial knee osteoarthritis (KOA), 2) the effects on the KCF of walking with a modified gait pattern and 3) the re
...
Objective: To evaluate 1) the relationship between the knee contact force (KCF) and knee adduction and flexion moments (KAM and KFM) during normal gait in people with medial knee osteoarthritis (KOA), 2) the effects on the KCF of walking with a modified gait pattern and 3) the relationship between changes in the KCF and changes in the knee moments. Method: We modeled the gait biomechanics of thirty-five patients with medial KOA using the AnyBody Modeling System during normal gait and two modified gait patterns. We calculated the internal KCF and evaluated the external joint moments (KAM and KFM) against it using linear regression analyses. Results: First peak medial KCF was associated with first peak KAM (R2 = 0.60) and with KAM and KFM (R2 = 0.73). Walking with both modified gait patterns reduced KAM (P = 0.002) and the medial to total KCF ratio (P < 0.001) at the first peak. Changes in KAM during modified gait were moderately associated with changes in the medial KCF at the first peak (R2 = 0.54 and 0.53). Conclusions: At the first peak, KAM is a reasonable substitute for the medial contact force, but not at the second peak. First peak KFM is also a significant contributor to the medial KCF. At the first peak, walking with a modified gait reduced the ratio of the medial to total KCF but not the medial KCF itself. To determine the effects of gait modifications on cartilage loading and disease progression, longitudinal studies and individualized modeling, accounting for motion control, would be required.
@en