ER

Ehsan Roohi

Authored

13 records found

Cooling of electronic devices is one of the critical challenges that the electronics industry is facing towards sustainable development. Aiming at lowering the surface temperature of the heat sink to limit thermally induced deformations, corrugated channels and nanofluids are emp ...
Gas flow and heat transfer in confined geometries at micro-and nanoscales differ considerably from those at macro-scales, mainly due to nonequilibrium effects such as velocity slip and temperature jump. Nonequilibrium effects increase with a decrease in the characteristic length- ...
The direct simulation Monte Carlo (DSMC) method, which is a probabilistic particle-based gas kinetic simulation approach, is employed in the present work to describe the physics of rarefied gas flow in super nanoporous materials (also known as mesoporous). The simulations are per ...
Flow patterns and heat transfer inside mini twisted oval tubes (TOTs) heated by constant-temperature walls are numerically investigated. Different configurations of tubes are simulated using water as the working fluid with temperature-dependent thermo-physical properties at Reyno ...
The liquid flow and conjugated heat transfer performance of single phase laminar flow in rectangular microchannels equipped with longitudinal vortex generators (LVGs) are numerically investigated. Deionized-water with temperature-dependent thermo-physical properties is employed t ...
The liquid flow and conjugated heat transfer performance of single phase laminar flow in rectangular microchannels equipped with longitudinal vortex generators (LVGs) are numerically investigated. Deionized-water with temperature-dependent thermo-physical properties is employed t ...
Conjugated heat transfer and hydraulic performance for nanofluid flow in a rectangular microchannel heat sink with LVGs (longitudinal vortex generators) are numerically investigated using at different ranges of Reynolds numbers. Three-dimensional simulations are performed on a mi ...
Conjugated heat transfer and hydraulic performance for nanofluid flow in a rectangular microchannel heat sink with LVGs (longitudinal vortex generators) are numerically investigated using at different ranges of Reynolds numbers. Three-dimensional simulations are performed on a mi ...
The present work is related to the study of the nitrogen gas flow through diverging micro/nano-channels. The direct simulation Monte-Carlo (DSMC) method has been used to study the flow. The Simplified Bernoulli Trials (SBT) collision scheme has been employed to reduce the computa ...
The present work is related to the study of the nitrogen gas flow through diverging micro/nano-channels. The direct simulation Monte-Carlo (DSMC) method has been used to study the flow. The Simplified Bernoulli Trials (SBT) collision scheme has been employed to reduce the computa ...
The gas flow characteristics in lid-driven cavities are influenced by several factors, such as the cavity geometry, gas properties, and boundary conditions. In this study, the physics of heat and gas flow in cylindrical lid-driven cavities with various cross sections, including f ...
This paper presents experimental and three-dimensional numerical study of gaseous slip flow through diverging microchannel. The measurements are performed for nitrogen gas flowing through microchannel with different divergence angles (4°, 8°, 12° and 16°), hydraulic diameters (11 ...
This paper presents experimental and three-dimensional numerical study of gaseous slip flow through diverging microchannel. The measurements are performed for nitrogen gas flowing through microchannel with different divergence angles (4°, 8°, 12° and 16°), hydraulic diameters (11 ...