The analysis of the spatial distribution of drinking water temperature (DWT) in the drinking water distribution system (DWDS) can allow for the detection of hotspots and the identification of suitable mitigation interventions to enhance the climate resilience. For this purpose, a
...
The analysis of the spatial distribution of drinking water temperature (DWT) in the drinking water distribution system (DWDS) can allow for the detection of hotspots and the identification of suitable mitigation interventions to enhance the climate resilience. For this purpose, a water temperature model is implemented in EPANET-MSX and coupled with the hydraulic model of the DWDS in the town of Almere (the Netherlands). This model is then used to assess the effectiveness of a range of interventions against the unwanted water warming under a climate scenario of an extreme air temperature increase in a Dutch summer. Finally, a solution scenario is suggested to comply with the Dutch legislative limit of 25 °C on DWT at the tap.