GD

Gianluca Demartini

7 records found

Plan-Then-Execute

An Empirical Study of User Trust and Team Performance When Using LLM Agents As A Daily Assistant

Since the explosion in popularity of ChatGPT, large language models (LLMs) have continued to impact our everyday lives. Equipped with external tools that are designed for a specific purpose (e.g., for flight booking or an alarm clock), LLM agents exercise an increasing capability ...

Editorial

Special Issue on Human in the Loop Data Curation

This Special Issue of the Journal of Data and Information Quality (JDIQ) contains novel theoretical and methodological contributions on data curation involving humans in the loop. In this editorial, we summarize the scope of the issue and briefly describe its content.
Although data quality is a long-standing and enduring problem, it has recently received a resurgence of attention due to the fast proliferation of data analytics, machine learning, and decision-support applications built upon the wide-scale availability and accessibility of (big) ...
Crowdsourcing is a popular technique to collect large amounts of human-generated labels, such as relevance judgments used to create information retrieval (IR) evaluation collections. Previous research has shown how collecting high quality labels from a crowdsourcing platform can ...
Paid micro-task crowdsourcing has gained in popularity partly due to the increasing need for large-scale manually labelled datasets which are often used to train and evaluate Artificial Intelligence systems. Modern paid crowdsourcing platforms use a piecework approach to rewards, ...
This paper presents Scalpel-CD, a first-of-its-kind system that leverages both human and machine intelligence to debug noisy labels from the training data of machine learning systems. Our system identifies potentially wrong labels using a deep probabilistic model, which is able t ...
Complexity is crucial to characterize tasks performed by humans through computer systems. Yet, the theory and practice of crowdsourcing currently lacks a clear understanding of task complexity, hindering the design of effective and efficient execution interfaces or fair monetary ...