FD

Florian Doster

Authored

19 records found

Hydro-mechanical coupling for flow diagnostics

A fast screening method to assess geomechanics on flow field distributions

Hydro-mechanical coupling is imperative when the stress disturbances induced by production/injection processes affect the reservoir performance. However, the application of coupled hydro-mechanical models in actual fullfield studies is still limited, mainly because of the high co ...
Accounting for poro-mechanical effects in full-field reservoir simulation studies and uncertainty quantification workflows using complex reservoir models is challenging, mainly because of the high computational cost. We hence introduce an alternative approach that couples hydrody ...
Naturally Fractured Reservoirs (NFR's) have received little attention as potential CO2 storage sites. Two main facts deter from storage projects in fractured reservoirs: (1) CO2 tends to be nonwetting in target formations and capillary forces will keep CO2 in the fractures, which ...
Spontaneous countercurrent imbibition into a finite porous medium is an important physical mechanism for many applications, included but not limited to irrigation, CO2 storage, and oil recovery. Symmetry considerations that are often valid in fractured porous media allow us to st ...
Relative permeabilities show significant dependence on the saturation path during CO2 enhanced oil recovery (EOR) and storage. This dependence (or hysteresis) is particularly important for water-alternating-gas (WAG) injection, a successful CO2 EOR and storage method for clastic ...
Fractures can have variable effects on fluid flow in a porous rock. Moderately conductive fractures may enhance the rock's overall effective permeability, while highly conductive fractures may completely dominate fluid transport. Fluid flow modeling is important to quantify the i ...
Flow modelling challenges in fractured reservoirs have led to the development of many simulation methods. It is often unclear which method should be employed. High-resolution discrete fracture and matrix (DFM) studies on small-scale representative models allow us to identify domi ...
Accounting for poro-mechanical effects in full-field reservoir simulation studies and uncertainty quantification workflows is still limited, mainly because of their high computational cost. We introduce a new approach that couples hydrodynamics and poro-mechanics with dual-porosi ...
Water-Alternating-Gas (WAG) injection could be an efficient way to improve recovery factors in fractured carbonate reservoirs. However, there are many geological uncertainties and engineering designs that influence the efficiency of the WAG process. In this study, we explore the ...
Fractures are often implicitly represented in models used to simulate flow in fractured porous media. This simplification results in smaller models that are computationally tractable. As computational power continues to increase, there has been growing interest in simulation meth ...
Simulation of multiphase flow in fractured reservoirs still poses a challenge due to the different timescales of fluid flow in fractures and matrix. Common approaches to modeling fractures in reservoir simulators include the discrete fracture and matrix (DFM) method, where the fr ...
Naturally fractured reservoirs are currently being considered as potential candidates for geological storage of CO2. Simulations of fractured reservoirs are notoriously challenging. Dual-porosity models are a cost-effective way of representing fractured reservoirs whose fundament ...
Naturally Fractured Reservoirs usually exhibit power law length distributions which do not possess any characteristic length scale, rendering the use of continuum methods difficult. This necessitates the adoption of hybrid models that represent a subset of the fractures as contin ...
Accounting for poro-mechanical effects in full-field reservoir simulation studies and uncertainty quantification workflows is still limited, mainly because of their high computational cost. We introduce a new approach that couples hydrodynamics and poro-mechanics with dual-porosi ...
Water-Alternating-Gas injection could be an efficient way to improve recovery factors in fractured carbonate reservoirs. However, the complex geology of fractured carbonate reservoirs and the complexity of the WAG process itself create uncertainties when predicting the efficiency ...
Multi-scale fractured reservoirs can be modelled effectively using hybrid methods that partition fractures into two subsets: one where fractures are upscaled and another one where fractures are represented explicitly. Existing partitioning methods are qualitative or empirical. In ...
Naturally fractured reservoirs hold significant reserves but are highly heterogeneous and are challenging to simulate flow in. Dual Porosity (DP) methods, although widely used, require fine tuning using production data and thus lack predictive capability in green field applicatio ...
Fractured reservoirs often exhibit multiple length scales and are best modelled using hybrid methods that partition fractures into a subset to be upscaled and another to be represented explicitly. To address the open question of how partitioning can be done, we propose a single p ...