DS
Dmitriy Shutin
3 records found
1
For swarm systems, distributed processing is of paramount importance, and Bayesian methods are preferred for their robustness. Existing distributed sparse Bayesian learn- ing (SBL) methods rely on the automatic relevance deter- mination (ARD), which involves a computationally com
...
This paper is an extension of a previous work that examined a decentralized approach to evaluate the uncertainty of estimating a spatial process using guided model-based multi-agent exploration. The model is a superposition of fixed kernel functions, with each kernel playing the
...
In processing spatially distributed data, multi-agent robotic platforms equipped with sensors and computing capabilities are gaining interest for applications in inhospitable environments. In this work an algorithm for a distributed realization of sparse bayesian learning (SBL) i
...