BACKGROUND:Improving physical activity (PA) is a core component of secondary prevention and cardiac (tele)rehabilitation. Commercially available activity trackers are frequently used to monitor and promote PA in cardiac patients. However, studies on the validity of these devices
...
BACKGROUND:Improving physical activity (PA) is a core component of secondary prevention and cardiac (tele)rehabilitation. Commercially available activity trackers are frequently used to monitor and promote PA in cardiac patients. However, studies on the validity of these devices in cardiac patients are scarce. As cardiac patients are being advised and treated based on PA parameters measured by these devices, it is highly important to evaluate the accuracy of these parameters in this specific population. OBJECTIVE:The aim of this study was to determine the accuracy and responsiveness of 2 wrist-worn activity trackers, Fitbit Charge 2 (FC2) and Mio Slice (MS), for the assessment of energy expenditure (EE) in cardiac patients. METHODS:EE assessed by the activity trackers was compared with indirect calorimetry (Oxycon Mobile [OM]) during a laboratory activity protocol. Two groups were assessed: patients with stable coronary artery disease (CAD) with preserved left ventricular ejection fraction (LVEF) and patients with heart failure with reduced ejection fraction (HFrEF). RESULTS:A total of 38 patients were included: 19 with CAD and 19 with HFrEF (LVEF 31.8%, SD 7.6%). The CAD group showed no significant difference in total EE between FC2 and OM (47.5 kcal, SD 112 kcal; P=.09), in contrast to a significant difference between MS and OM (88 kcal, SD 108 kcal; P=.003). The HFrEF group showed significant differences in EE between FC2 and OM (38 kcal, SD 57 kcal; P=.01), as well as between MS and OM (106 kcal, SD 167 kcal; P=.02). Agreement of the activity trackers was low in both groups (CAD: intraclass correlation coefficient [ICC] FC2=0.10, ICC MS=0.12; HFrEF: ICC FC2=0.42, ICC MS=0.11). The responsiveness of FC2 was poor, whereas MS was able to detect changes in cycling loads only. CONCLUSIONS:Both activity trackers demonstrated low accuracy in estimating EE in cardiac patients and poor performance to detect within-patient changes in the low-to-moderate exercise intensity domain. Although the use of activity trackers in cardiac patients is promising and could enhance daily exercise behavior, these findings highlight the need for population-specific devices and algorithms.@en