Multimodal emotion recognition (MER) is essential for understanding human emotions from diverse sources such as speech, text, and video. However, modality heterogeneity and inconsistent expression pose challenges for effective feature fusion. To address this, we propose a novel M
...
Multimodal emotion recognition (MER) is essential for understanding human emotions from diverse sources such as speech, text, and video. However, modality heterogeneity and inconsistent expression pose challenges for effective feature fusion. To address this, we propose a novel MER framework combining a Dynamic Weighted Graph Convolutional Network (DW-GCN) for feature disentanglement and a Cross-Attention Consistency-Gated Fusion (CACG-Fusion) module for robust integration. DW-GCN models complex inter-modal relationships, enabling the extraction of both common and private features. The CACG-Fusion module subsequently enhances classification performance through dynamic alignment of cross-modal cues, employing attention-based coordination and consistency-preserving gating mechanisms to optimize feature integration. Experiments on the CMU-MOSI and CMU-MOSEI datasets demonstrate that our method achieves state-of-the-art performance, significantly improving the ๐ด๐ถ๐ถ7 , ๐ด๐ถ๐ถ2, and ๐น1 scores.