Authored

11 records found

Connecting the dots

Key insights on ParB for chromosome segregation from single-molecule studies

Bacterial cells require DNA segregation machinery to properly distribute a genome to both daughter cells upon division. The most common system involved in chromosome and plasmid segregation in bacteria is the ParABS system. A core protein of this system - partition protein B (Par ...

Correction to

Direct observation of a crescent-shape chromosome in expanded Bacillus subtilis cells (Nature Communications, (2024), 15, 1, (2737), 10.1038/s41467-024-47094-x)

Correction to: Nature Communicationhttps://doi.org/10.1038/s41467-024-47094-x, published online 28 March 2024 The original version of this article contained an error in the “Acknowledgement “section. The original version read “We also acknowledge funding for the work in S.G. lab ...

Correction to

Direct observation of a crescent-shape chromosome in expanded Bacillus subtilis cells (Nature Communications, (2024), 15, 1, (2737), 10.1038/s41467-024-47094-x)

Correction to: Nature Communicationhttps://doi.org/10.1038/s41467-024-47094-x, published online 28 March 2024 The original version of this article contained an error in the “Acknowledgement “section. The original version read “We also acknowledge funding for the work in S.G. lab ...

Correction to

Direct observation of a crescent-shape chromosome in expanded Bacillus subtilis cells (Nature Communications, (2024), 15, 1, (2737), 10.1038/s41467-024-47094-x)

Correction to: Nature Communicationhttps://doi.org/10.1038/s41467-024-47094-x, published online 28 March 2024 The original version of this article contained an error in the “Acknowledgement “section. The original version read “We also acknowledge funding for the work in S.G. lab ...
In most bacteria, chromosome segregation is driven by the ParABS system where the CTPase protein ParB loads at the parS site to trigger the formation of a large partition complex. Here, we present in vitro studies of the partition complex for Bacillus subtilis ParB, using single- ...
This thesis explores the mechanisms that underlie chromosome organization in bacteria. Bacteria are considered amongst the simplest living organisms on our planet. They lack the cellular organization found in other domains of life (Archaea or Eukaryotics) and often have simpler l ...
Fluorescence microscopy has become a powerful tool in molecular cell biology. Visualizing specific proteins in bacterial cells requires labeling with fluorescent or fluorogenic tags, preferentially at the native chromosomal locus to preserve expression dynamics associated with th ...
Fluorescence microscopy has become a powerful tool in molecular cell biology. Visualizing specific proteins in bacterial cells requires labeling with fluorescent or fluorogenic tags, preferentially at the native chromosomal locus to preserve expression dynamics associated with th ...
The ParABS system is essential for prokaryotic chromosome segregation. After loading at parS on the genome, ParB (partition protein B) proteins rapidly redistribute to distances of ~15 kilobases from the loading site. It has remained puzzling how this large-distance spreading can ...
DNA stores our genetic information and is ubiquitous in applications, where it interacts with binding partners ranging from small molecules to large macromolecular complexes. Binding is modulated by mechanical strains in the molecule and can change local DNA structure. Frequently ...
Bacterial chromosomes are folded into tightly regulated three-dimensional structures to ensure proper transcription, replication, and segregation of the genetic information. Direct visualization of chromosomal shape within bacterial cells is hampered by cell-wall confinement and ...