Circular Image

A.M. Schweidtmann

68 records found

The chemical industry needs to undergo a significant transformation towards more sustainable and circular production systems. To guide this transformation, estimating the environmental impacts of chemical production at early product screening or development stages is highly desir ...
Neural networks are widely used as surrogate models but they do not guarantee physically consistent predictions thereby preventing adoption in various applications. We propose a method that can enforce NNs to satisfy physical laws that are nonlinear in nature such as enthalpy bal ...

Accelerating process synthesis with reinforcement learning

Transfer learning from multi-fidelity simulations and variational autoencoders

Reinforcement learning has shown some success in automating process design by integrating data-driven models that interact with process simulators to learn to build process flowsheets iteratively. However, one major challenge in the learning process is that the reinforcement lear ...

Graph-to-SFILES

Control structure prediction from process topologies using generative artificial intelligence

Control structure design is an important but tedious step in P&ID development. Generative artificial intelligence (AI) promises to reduce P&ID development time by supporting engineers. Previous research on generative AI in chemical process design mainly represented proces ...
The process engineering domain widely uses Process Flow Diagrams (PFDs) and Process and Instrumentation Diagrams (P&IDs) to represent process flows and equipment configurations. However, the P&IDs and PFDs, hereafter called flowsheets, can contain errors causing safety ha ...
ReLU neural networks have been modelled as constraints in mixed integer linear programming (MILP), enabling surrogate-based optimisation in various domains and efficient solution of machine learning certification problems. However, previous works are mostly limited to MLPs. Graph ...
Microgels are cross-linked, colloidal polymer networks with great potential for stimuli-response release in drug-delivery applications, as their small size allows them to pass human cell boundaries. For applications with specified requirements regarding size, producing tailored m ...
The transformation toward renewable energy and feedstock supply in the chemical industry requires new conceptual process design approaches. Recently, deep reinforcement learning (RL), a subclass of machine learning, has shown the potential to solve complex decision-making problem ...
Multiscale modeling of catalytical chemical reactors typically results in solving a system of partial differential equations (PDEs) or ordinary differential equations (ODEs). Despite significant progress, the numerical solution of such PDE or ODE systems is still a computational ...
The term hybrid modeling refers to the combination of parametric models (typically derived from knowledge about the system) and nonparametric models (typically deduced from data). Despite more than 20 years of research, over 150 scientific publications (Agharafeie et al., 2023), ...
This “white paper” is a concise perspective of the potential of machine learning in the process systems engineering (PSE) domain, based on a session during FIPSE 5, held in Crete, Greece, June 27–29, 2022. The session included two invited talks and three short contributed present ...
The estimation of polymer properties is of crucial importance in many domains such as energy, healthcare, and packaging. Recently, graph neural networks (GNNs) have shown promising results for the prediction of polymer properties based on supervised learning. However, the trainin ...

Teaching machine learning to programming novices

An action-oriented didactic concept

Machine Learning (ML) techniques are encountered nowadays across disciplines, from social sciences, through natural sciences to engineering. However, teaching ML is a daunting task. Aside from the methodological complexity of ML algorithms, both with respect to theory and impleme ...
ChatGPT is a powerful language model from OpenAI that is arguably able to comprehend and generate text. ChatGPT is expected to greatly impact society, research, and education. An essential step to understand ChatGPT’s expected impact is to study its domain-specific answering capa ...
Computational Fluid Dynamics (CFD) is a powerful tool which can help with the geometry optimization of continuous milli-scale reactors, which often are highly complex devices. Attempting to perform this optimization by manually modifying and testing geometry configurations can ho ...
Advances in deep convolutional neural networks led to breakthroughs in many computer vision applications. In chemical engineering, a number of tools have been developed for the digitization of Process and Instrumentation Diagrams. However, there is no framework for the digitizati ...
Process design is a creative task that is currently performed manually by engineers. Artificial intelligence provides new potential to facilitate process design. Specifically, reinforcement learning (RL) has shown some success in automating process design by integrating data-driv ...
Artificial intelligence has great potential for accelerating the design and engineering of chemical processes. Recently, we have shown that transformer-based language models can learn to auto-complete chemical process flowsheets using the SFILES 2.0 string notation. Also, we show ...
Ionic liquids (ILs) are important solvents for sustainable processes and predicting activity coefficients (ACs) of solutes in ILs is needed. Recently, matrix completion methods (MCMs), transformers, and graph neural networks (GNNs) have shown high accuracy in predicting ACs of bi ...