NP

Nikhil Parappurath

Authored

13 records found

Topological protection in photonics offers new prospects for guiding and manipulating classical and quantum information. The mechanism of spin-orbit coupling promises the emergence of edge states that are helical, exhibiting unidirectional propagation that is topologically protec ...
The introduction of topological concepts to the design of photonic crystal cavities holds great promise for applications in integrated photonics due to the prospect of topological protection. This study examines the signatures of topological light confinement in the leakage radia ...
We measure the local near-field spin in topological edge state waveguides that emulate the quantum spin Hall effect. We reveal a highly structured spin density distribution that is not linked to a unique pseudospin value. From experimental near-field real-space maps and numerical ...
We study the signatures of topological light confinement in the leakage radiation of two-dimensional topological photonic crystal cavities that feature the quantum spin Hall effect at telecom wavelengths. The mode profiles in real and momentum space are retrieved using far field ...
Two-dimensional photonic crystals allow for various types of photonic topological insulators. In this paper, we present our efforts to directly image on-chip light propagation in topological edge states. We quantify the robustness of such states to scattering at sharp corners and ...
Two-dimensional photonic crystals allow for various types of photonic topological insulators. In this paper, we present our efforts to directly image on-chip light propagation in topological edge states. We quantify the robustness of such states to scattering at sharp corners and ...
The concept of topology has proven immensely powerful in physics, describing new phases of matter with unique properties. There has been a recent surge in attempts to implement topological protection in the photonic domain, owing to the application potential of robust transport i ...
We employ near-and far-field optical microscopy to characterize the propagation of edge states in topological photonic crystal waveguides and cavities. We test fundamental and practical limits to topological protection, quantifying dispersion, loss, and scattering.@en
We employ near-and far-field optical microscopy to characterize the propagation of edge states in topological photonic crystal waveguides and cavities. We test fundamental and practical limits to topological protection, quantifying dispersion, loss, and scattering.@en
We employ near-and far-field optical microscopy to characterize the propagation of edge states in topological photonic crystal waveguides and cavities. We test fundamental and practical limits to topological protection, quantifying dispersion, loss, and scattering.@en
We employ near-and far-field optical microscopy to characterize the propagation of edge states in topological photonic crystal waveguides and cavities. We test fundamental and practical limits to topological protection, quantifying dispersion, loss, and scattering.@en
We employ near-and far-field optical microscopy to characterize the propagation of edge states in topological photonic crystal waveguides and cavities. We test fundamental and practical limits to topological protection, quantifying dispersion, loss, and scattering.@en
We employ near-and far-field optical microscopy to characterize the propagation of edge states in topological photonic crystal waveguides and cavities. We test fundamental and practical limits to topological protection, quantifying dispersion, loss, and scattering.@en