Robot manipulators are suitable for many industrial tasks, such as assembly and pick-and-place operations. However, high-acceleration motions result in shaking forces and moments to the base, which can cause vibration of the manipulator and instability in the case of a mobile bas
...
Robot manipulators are suitable for many industrial tasks, such as assembly and pick-and-place operations. However, high-acceleration motions result in shaking forces and moments to the base, which can cause vibration of the manipulator and instability in the case of a mobile base. Furthermore, gravity compensation of the manipulator links requires additional motor torque, which can increase energy consumption. Balanced manipulators address these problems by employing a mechanical design that results in the balancing of gravity and other static forces, or the removal of shaking forces and/or moments. This review paper provides an overview of mechanical design approaches for balanced robotic manipulation, with an emphasis on experimentally prototyped designs. We first define the types of balancing according to the literature. We then provide an overview of different approaches to the mechanical design of balanced manipulators, along with simple examples of their implementation. Experimental prototypes in this field are then comprehensively presented and summarized to allow readers to compare their development maturity. At the end of the paper, we outline challenges and future directions of research.