Authored

19 records found

This review paper discusses the developments in immersed or unfitted finite element methods over the past decade. The main focus is the analysis and the treatment of the adverse effects of small cut elements. We distinguish between adverse effects regarding the stability and adve ...
This chapter reviews the work conducted by our team on scan-based immersed isogeometric analysis for flow problems. To leverage the advantageous properties of isogeometric analysis on complex scan-based domains, various innovations have been made: (i) A spline-based segmentation ...
In this article, we study the effect of small-cut elements on the critical time-step size in an immersogeometric explicit dynamics context. We analyze different formulations for second-order (membrane) and fourth-order (shell-type) equations, and derive scaling relations between ...
We show that in the variational multiscale framework, the weak enforcement of essential boundary conditions via Nitsche's method corresponds directly to a particular choice of projection operator. The consistency, symmetry and penalty terms of Nitsche's method all originate from ...
Ill-conditioning of the system matrix is a well-known complication in immersed finite element methods and trimmed isogeometric analysis. Elements with small intersections with the physical domain yield problematic eigenvalues in the system matrix, which generally degrades efficie ...
Ill-conditioning of the system matrix is a well-known complication in immersed finite element methods and trimmed isogeometric analysis. Elements with small intersections with the physical domain yield problematic eigenvalues in the system matrix, which generally degrades efficie ...
Ill-conditioning of the system matrix is a well-known complication in immersed finite element methods and trimmed isogeometric analysis. Elements with small intersections with the physical domain yield problematic eigenvalues in the system matrix, which generally degrades efficie ...
Nitsche's method is a popular approach to implement Dirichlet-type boundary conditions in situations where a strong imposition is either inconvenient or simply not feasible. The method is widely applied in the context of unfitted finite element methods. Of the classical (symmetri ...
This contribution presents a hierarchical multigrid approach for the solution of large-scale finite cell problems on both uniform grids and multi-level hp-discretizations. The proposed scheme takes advantage of the hierarchical basis functions utilized in the finite cell method a ...
This contribution presents a hierarchical multigrid approach for the solution of large-scale finite cell problems on both uniform grids and multi-level hp-discretizations. The proposed scheme takes advantage of the hierarchical basis functions utilized in the finite cell method a ...
This contribution presents a hierarchical multigrid approach for the solution of large-scale finite cell problems on both uniform grids and multi-level hp-discretizations. The proposed scheme takes advantage of the hierarchical basis functions utilized in the finite cell method a ...
This contribution presents a hierarchical multigrid approach for the solution of large-scale finite cell problems on both uniform grids and multi-level hp-discretizations. The proposed scheme takes advantage of the hierarchical basis functions utilized in the finite cell method a ...
We propose an adaptive mesh refinement strategy for immersed isogeometric analysis, with application to steady heat conduction and viscous flow problems. The proposed strategy is based on residual-based error estimation, which has been tailored to the immersed setting by the inco ...
We propose an adaptive mesh refinement strategy for immersed isogeometric analysis, with application to steady heat conduction and viscous flow problems. The proposed strategy is based on residual-based error estimation, which has been tailored to the immersed setting by the inco ...
We propose an adaptive mesh refinement strategy for immersed isogeometric analysis, with application to steady heat conduction and viscous flow problems. The proposed strategy is based on residual-based error estimation, which has been tailored to the immersed setting by the inco ...
We propose an adaptive mesh refinement strategy for immersed isogeometric analysis, with application to steady heat conduction and viscous flow problems. The proposed strategy is based on residual-based error estimation, which has been tailored to the immersed setting by the inco ...
We propose an adaptive mesh refinement strategy for immersed isogeometric analysis, with application to steady heat conduction and viscous flow problems. The proposed strategy is based on residual-based error estimation, which has been tailored to the immersed setting by the inco ...
We propose an adaptive mesh refinement strategy for immersed isogeometric analysis, with application to steady heat conduction and viscous flow problems. The proposed strategy is based on residual-based error estimation, which has been tailored to the immersed setting by the inco ...
We propose an adaptive mesh refinement strategy for immersed isogeometric analysis, with application to steady heat conduction and viscous flow problems. The proposed strategy is based on residual-based error estimation, which has been tailored to the immersed setting by the inco ...

Contributed

1 records found

Computational fluid dynamics (CFD) is an important tool in design involving fluid flow. Scale-resolving CFD methods exist, but they are too computationally expensive for practical design. Instead, the relatively cheap Reynolds-averaged Navier-Stokes (RANS) approach is the industr ...