MA

M.A. Achterberg

14 records found

Authored

The COVID-19 pandemic has had a disruptive impact on healthcare systems and everyday life of the majority of the people around the globe. Despite many years of research on network epidemiology, many key aspects of disease transmission and in particular the response of people to t ...

The effective graph resistance, also known as the Kirchhoff index, is metric that is used to quantify the robustness of a network. We show that the optimisation problem of minimizing the effective graph resistance of a graph by adding a fixed number of links, is NP-hard.

@e ...

The interplay between disease spreading and personal risk perception is of key importance for modelling the spread of infectious diseases. We propose a planar system of ordinary differential equations (ODEs) to describe the co-evolution of a spreading phenomenon and the averag ...

Researchers from various scientific disciplines have attempted to forecast the spread of coronavirus disease 2019 (COVID-19). The proposed epidemic prediction methods range from basic curve fitting methods and traffic interaction models to machine-learning approaches. If we co ...

We analyze continuous-time Markovian ϵ-SIS epidemics with self-infections on the complete graph. The majority of the graphs are analytically intractable, but many physical features of the ϵ-SIS process observed in the complete graph can occur in any other graph. In this work, ...

During the outbreak of a virus, perhaps the greatest concern is the future evolution of the epidemic: How many people will be infected and which regions will be affected the most? The accurate prediction of an epidemic enables targeted disease countermeasures (e.g., allocating ...

pinion dynamics models study how the interaction among people influences the opinion formation process. In most opinion dynamics models, only one opinion can exist in the steady state, which is different from the real-life opinion formation process. In 2009, Shao et at. introd ...

We introduce a Markov Modulated Process (MMP) to describe human mobility. We represent the mobility process as a time-varying graph, where a link specifies a connection between two nodes (humans) at any discrete time step. Each state of the Markov chain encodes a certain modif ...

The influence of people's individual responses to the spread of contagious phenomena, like the COVID-19 pandemic, is still not well understood. We investigate the Markovian Generalized Adaptive Susceptible-Infected-Susceptible (G-ASIS) epidemic model. The G-ASIS model comprise ...

In the classical susceptible-infected-susceptible (SIS) model, a disease or infection spreads over a given, mostly fixed graph. However, in many real complex networks, the topology of the underlying graph can change due to the influence of the dynamical process. In this paper, ...

At the moment of writing, the future evolution of the COVID-19 epidemic is unclear. Predictions of the further course of the epidemic are decisive to deploy targeted disease control measures. We consider a network-based model to describe the COVID-19 epidemic in the Hubei prov ...

Contributed

Opinion dynamics models study how the interaction among people influences the opinion formation process. In most opinion dynamics models, only one opinion could exist in the steady state, which is different from the real-life opinion formation process. In 2009, Shao \emph{et al.} ...
The spreading process of diseases has been an important research topic for many years. It has profound effects on the development of human social behaviors. The underlying social network structure may change when individuals change their connection with other individuals in respo ...
Exact network reconstruction from observations of the SIS process in discrete time would be very useful if possible, with implications for tracking the spread of infectious diseases, trends and news on social media. It could provide estimates for the strength of links in a networ ...