25 records found

1

## Authored

Assign to each vertex of the one-dimensional torus i.i.d. weights with a heavy-tail of index τ−1>0. Connect then each couple of vertices with probability roughly proportional to the product of their weights and that decays polynomially with exponent α>0 in their distance ...

The discrete membrane model is a Gaussian random interface whose inverse covariance is given by the discrete biharmonic operator on a graph. In literature almost all works have considered the field as indexed over Zd, and this enabled one to study the model using methods from ...

## Dynamical fitness models

### Evidence of universality classes for preferential attachment graphs

In this paper we define a family of preferential attachment models for random graphs with fitness in the following way: independently for each node, at each time step a random fitness is drawn according to the position of a moving average process with positive increments. We w ...

In this article we study the scaling limit of the interface model on Zd where the Hamiltonian is given by a mixed gradient and Laplacian interaction. We show that in any dimension the scaling limit is given by the Gaussian free field. We discuss the appropriate spaces in which ...

In this article we study the scaling limit of the interface model on Zd where the Hamiltonian is given by a mixed gradient and Laplacian interaction. We show that in any dimension the scaling limit is given by the Gaussian free field. We discuss the appropriate spaces in which ...

## Scaling Limit of Semiflexible Polymers

### A Phase Transition

We consider a semiflexible polymer in Zd which is a random interface model with a mixed gradient and Laplacian interaction. The strength of the two operators is governed by two parameters called lateral tension and bending rigidity, which might depend on the size of the graph. ...

## Scaling Limits in Divisible Sandpiles

### A Fourier Multiplier Approach

In this paper we investigate scaling limits of the odometer in divisible sandpiles on d-dimensional tori following up the works of Chiarini et al. (Odometer of long-range sandpiles in the torus: mean behaviour and scaling limits, 2018), Cipriani et al. (Probab Theory Relat Fie ...

In this article we give a general criterion for some dependent Gaussian models to belong to maximal domain of attraction of Gumbel, following an application of the Stein–Chen method studied in Arratia et al. (Ann Probab 17(1):9–25, 1989). We also show the convergence of the as ...

We show that the rescaled maximum of the discrete Gaussian Free Field (DGFF) in dimension larger or equal to 3 is in the maximal domain of attraction of the Gumbel distribution. The result holds both for the infinite-volume field as well as the field with zero boundary conditi ...

We show that the rescaled maximum of the discrete Gaussian Free Field (DGFF) in dimension larger or equal to 3 is in the maximal domain of attraction of the Gumbel distribution. The result holds both for the infinite-volume field as well as the field with zero boundary conditi ...

In this work we are considering the behaviour of the limit shape of Young diagrams associated to random permutations on the set (1,...,n) under a particular class of multiplicative measures with polynomial growing cycle weights. Our method is based on generating functions and ...