AC

25 records found

Authored

Assign to each vertex of the one-dimensional torus i.i.d. weights with a heavy-tail of index τ−1>0. Connect then each couple of vertices with probability roughly proportional to the product of their weights and that decays polynomially with exponent α>0 in their distance ...

The discrete membrane model is a Gaussian random interface whose inverse covariance is given by the discrete biharmonic operator on a graph. In literature almost all works have considered the field as indexed over Zd, and this enabled one to study the model using methods from ...

Dynamical fitness models

Evidence of universality classes for preferential attachment graphs

In this paper we define a family of preferential attachment models for random graphs with fitness in the following way: independently for each node, at each time step a random fitness is drawn according to the position of a moving average process with positive increments. We w ...

In this article we study the scaling limit of the interface model on Zd where the Hamiltonian is given by a mixed gradient and Laplacian interaction. We show that in any dimension the scaling limit is given by the Gaussian free field. We discuss the appropriate spaces in which ...

In this article we study the scaling limit of the interface model on Zd where the Hamiltonian is given by a mixed gradient and Laplacian interaction. We show that in any dimension the scaling limit is given by the Gaussian free field. We discuss the appropriate spaces in which ...

We consider a semiflexible polymer in Zd which is a random interface model with a mixed gradient and Laplacian interaction. The strength of the two operators is governed by two parameters called lateral tension and bending rigidity, which might depend on the size of the graph. ...

Scaling Limits in Divisible Sandpiles

A Fourier Multiplier Approach

In this paper we investigate scaling limits of the odometer in divisible sandpiles on d-dimensional tori following up the works of Chiarini et al. (Odometer of long-range sandpiles in the torus: mean behaviour and scaling limits, 2018), Cipriani et al. (Probab Theory Relat Fie ...

In a recent work Levine et al. (Ann Henri Poincaré 17:1677–1711, 2016. https://doi.org/10.1007/s00023-015-0433-x) prove that the odometer function of a divisible sandpile model on a finite graph can be expressed as a shifted discrete bilaplacian Gaussian field. For the discrete ...
Massive and massless Gaussian free fields can be described as generalized Gaussian processes indexed by an appropriate space of functions. In this article we study various approaches to approximate these fields and look at the fractal properties of the thick points of their cut-o ...

In this article we give a general criterion for some dependent Gaussian models to belong to maximal domain of attraction of Gumbel, following an application of the Stein–Chen method studied in Arratia et al. (Ann Probab 17(1):9–25, 1989). We also show the convergence of the as ...

We show that the rescaled maximum of the discrete Gaussian Free Field (DGFF) in dimension larger or equal to 3 is in the maximal domain of attraction of the Gumbel distribution. The result holds both for the infinite-volume field as well as the field with zero boundary conditi ...

We show that the rescaled maximum of the discrete Gaussian Free Field (DGFF) in dimension larger or equal to 3 is in the maximal domain of attraction of the Gumbel distribution. The result holds both for the infinite-volume field as well as the field with zero boundary conditi ...

In this work we are considering the behaviour of the limit shape of Young diagrams associated to random permutations on the set (1,...,n) under a particular class of multiplicative measures with polynomial growing cycle weights. Our method is based on generating functions and ...

Contributed

Level-set percolation on the Discrete Gaussian Free Field (DGFF) turned out to be a hot topic within mathematical physics over the last couple of years. In particular, the DGFF on Z^d , with homogeneously weighted nearest-neighbour interactions, i.e. all conductances equal to 1, ...
For modelling microstructures of materials the Voronoi diagram is one of the most commonly used models. In this thesis we study a generalization of Voronoi diagrams known as the Laguerre-Voronoi diagram. In particular, we consider the stereological problem of estimating the 3D ce ...
The classical process capability indices are still the most prominently used by practitioners for asymmetrical tolerances even while not accurately reflecting on process capability. It appears that an adequate measure of capability for asymmetrical tolerances is yet to be discove ...
This thesis developed a computer powered simulation study of the divisible sandpile model. It introduces a constant to a widely used formula to generate sandpiles. This constant can be used to study the convergence characteristics of sandpiles. In this thesis it is shown that the ...
In this thesis we study the Symmetric Exclusion Process (SEP) and the Discrete Gaussian Free Field (DGFF) on compact Riemannian manifolds. In particular, we obtain the hydrodynamic limit and the equilibrium fluctuations of SEP and we show that the DGFF converges to its continuous ...
The random graph is a mathematical model simulating common daily cases, such as ranking and social networks. Generally, the connection between different users in the network is established through preference, and this phenomenon leads to a power-law behaviour of the degree sequen ...
In the divisible sandpile model, we consider a collection of i.i.d. Gaussian heights on a finite graph. It was shown by Levine et al. (2015) that the odometer function in this case equals a discrete, bi-Laplacian field. Subsequently, Cipriani et al. (2016) proved that the scaling ...