Mitigation of the threat from airbursting asteroids requires an understanding of the potential risk they pose for the ground. How asteroids release their kinetic energy in the atmosphere is not well understood due to the rarity of large impacts. Here we present a comprehensive, s
...
Mitigation of the threat from airbursting asteroids requires an understanding of the potential risk they pose for the ground. How asteroids release their kinetic energy in the atmosphere is not well understood due to the rarity of large impacts. Here we present a comprehensive, space-to-laboratory characterization of an impact of an L chondrite, which represents a common type of Earth-impacting asteroid. Small asteroid 2023 CX1 was detected in space and predicted to impact over Normandy, France, on 13 February 2023. Observations from several independent sensors and reduction techniques revealed an unusual but potentially high-risk fragmentation behaviour. The nearly spherical 650 ± 160 kg (72 ± 6 cm diameter) asteroid catastrophically fragmented at a dynamic pressure of 4 MPa around 28 km altitude, releasing 98% of its total energy in a concentrated region of the atmosphere. The resulting shock wave was spherical, not cylindrical, and released more energy closer to the ground. This type of fragmentation increases the risk of substantial damage at ground level. These results warrant consideration for a planetary defence strategy for cases where a >3–4 MPa dynamic pressure is expected, including planning for evacuation of areas beneath anticipated disruption locations.