Spider silk is recognized for its exceptional mechanical properties and biocompatibility, making it a versatile platform for developing functional materials. In this study, a modular functionalization strategy for recombinant spider silk is presented using SpyTag/SpyCatcher chemi
...
Spider silk is recognized for its exceptional mechanical properties and biocompatibility, making it a versatile platform for developing functional materials. In this study, a modular functionalization strategy for recombinant spider silk is presented using SpyTag/SpyCatcher chemistry, a prototype of genetically encoded click chemistry. The approach involves AlphaFold2-aided design of SpyTagged spider silk coupled with bacterial expression and biomimetic spinning, enabling the decoration of silk with various SpyCatcher-fusion motifs, such as fluorescent proteins, enzymes, and cell-binding ligands. The silk threads can be coated with a silica layer using silicatein, an enzyme for silicification, resulting in a hybrid inorganic–organic 1D material. The threads installed with RGD or laminin cell-binding ligands lead to enhanced endothelial cell attachment and proliferation. These findings demonstrate a straightforward yet powerful approach to 1D protein materials.