YM

Y. Minamoto

Authored

15 records found

A neural network (NN) aided model is proposed for the filtered reaction rate in moderate or intense low-oxygen dilution (MILD) combustion. The framework of the present model is based on the partially stirred reactor (PaSR) approach, and the fraction of the reactive structure appe ...
Direct Numerical Simulations (DNS) data of Moderate or Intense Low-oxygen Dilution (MILD) combustion are analysed to identify the contributions of the autoignition and flame modes. This is performed using an extended Chemical Explosive Mode Analysis (CEMA) which accounts for diff ...
Direct Numerical Simulations (DNS) data of Moderate or Intense Low-oxygen Dilution (MILD) combustion are analysed to identify the contributions of the autoignition and flame modes. This is performed using an extended Chemical Explosive Mode Analysis (CEMA) which accounts for diff ...
Direct Numerical Simulations (DNS) data of Moderate or Intense Low-oxygen Dilution (MILD) combustion are analysed to identify the contributions of the autoignition and flame modes. This is performed using an extended Chemical Explosive Mode Analysis (CEMA) which accounts for diff ...
Direct Numerical Simulations (DNS) data of Moderate or Intense Low-oxygen Dilution (MILD) combustion are analysed to identify the contributions of the autoignition and flame modes. This is performed using an extended Chemical Explosive Mode Analysis (CEMA) which accounts for diff ...
Direct Numerical Simulations (DNS) data of Moderate or Intense Low-oxygen Dilution (MILD) combustion are analysed to identify the contributions of the autoignition and flame modes. This is performed using an extended Chemical Explosive Mode Analysis (CEMA) which accounts for diff ...
Direct Numerical Simulations (DNS) data of Moderate or Intense Low-oxygen Dilution (MILD) combustion are analysed to identify the contributions of the autoignition and flame modes. This is performed using an extended Chemical Explosive Mode Analysis (CEMA) which accounts for diff ...
Direct Numerical Simulations (DNS) data of Moderate or Intense Low-oxygen Dilution (MILD) combustion are analysed to identify the contributions of the autoignition and flame modes. This is performed using an extended Chemical Explosive Mode Analysis (CEMA) which accounts for diff ...
Direct numerical simulation (DNS) data of freely propagating turbulent premixed flame of stoichiometric hydrogen air mixture inside a closed vessel is analysed to study a sub-grid combustion closure based on unstrained flamelet approach. This modeling framework needs closures for ...
Direct numerical simulation (DNS) data of freely propagating turbulent premixed flame of stoichiometric hydrogen air mixture inside a closed vessel is analysed to study a sub-grid combustion closure based on unstrained flamelet approach. This modeling framework needs closures for ...
Direct numerical simulation (DNS) data of freely propagating turbulent premixed flame of stoichiometric hydrogen air mixture inside a closed vessel is analysed to study a sub-grid combustion closure based on unstrained flamelet approach. This modeling framework needs closures for ...
Direct numerical simulations of Moderate or Intense Low-oxygen Dilution combustion inside a cubical domain are performed. The computational domain is specified with inflow and outflow boundary conditions in one direction and periodic conditions in the other two directions. The in ...
Direct numerical simulations of Moderate or Intense Low-oxygen Dilution combustion inside a cubical domain are performed. The computational domain is specified with inflow and outflow boundary conditions in one direction and periodic conditions in the other two directions. The in ...
Direct numerical simulations of Moderate or Intense Low-oxygen Dilution combustion inside a cubical domain are performed. The computational domain is specified with inflow and outflow boundary conditions in one direction and periodic conditions in the other two directions. The in ...