Fd
F.M. de Oliveira Filho
5 records found
1
The theta body of a graph, introduced by Grötschel, Lovász, and Schrijver (in 1986), is a tractable relaxation of the independent-set polytope derived from the Lovász theta number. In this paper, we recursively extend the theta body, and hence the theta number, to hypergraphs. We
...
The average kissing number in ℝn is the supremum of the average degrees of contact graphs of packings of finitely many balls (of any radii) in ℝn. We provide an upper bound for the average kissing number based on semidefinite programming that improves previo
...
We propose a hierarchy of k-point bounds extending the Delsarte–Goethals–Seidel linear programming 2-point bound and the Bachoc–Vallentin semidefinite programming 3-point bound for spherical codes. An optimized implementation of this hierarchy allows us to compute 4, 5, and 6-poi
...
We describe a factor-revealing convex optimization problem for the integrality gap of the maximum-cut semidefinite programming relaxation: for each n 2 we present a convex optimization problem whose optimal value is the largest possible ratio between the value of an optimal rank-
...
In this paper we prove a theorem that provides an upper bound for the density of packings of congruent copies of a given convex body in ℝn; this theorem is a generalization of the linear programming bound for sphere packings. We illustrate its use by computing an upper
...