AG

A. Goryachev

Authored

4 records found

Author Correction

Coupling electrochemical CO<sub>2</sub> conversion with CO<sub>2</sub> capture (Nature Catalysis, (2021), 4, 11, (952-958), 10.1038/s41929-021-00699-7)

In the version of this article, there were errors in Fig. 2a and d. In Fig. 2a, we have changed Cu2+ to Cu(0) in the revised version. While the two references cited in our paper used Cu2+ in their schematics,1,2 we believe that Cu(0) is the correct representation for the electroc ...
Titanium-based metal-organic framework, NH2-MIL-125(Ti), has been widely investigated for photocatalytic applications but has low activity in the hydrogen evolution reaction (HER). In this work, we show a one-step low-cost postmodification of NH2-MIL-125(Ti) via impregnation of C ...
CO2 electrolysis might be a key process to utilize intermittent renewable electricity for the sustainable production of hydrocarbon chemicals without relying on fossil fuels. Commonly used carbon-based gas diffusion electrodes (GDEs) enable high Faradaic efficiencies for the desi ...
Electrochemical CO2 conversion into fuels or chemicals and CO2 capture from point or dilute sources are two important processes to address the gigaton challenges in reducing greenhouse gas emissions. Both CO2 capture and electrochemical CO2 conversion are energy intensive, and sy ...