ZZ

Zhiguo Zeng

2 records found

Authored

We pose the maintenance planning for systems using probabilistic Remaining Useful Life (RUL) prognostics as a renewal reward process. Data-driven probabilistic RUL prognostics are obtained using a Convolutional Neural Network with Monte Carlo dropout. The maintenance planning mod ...

The increasing availability of condition-monitoring data for components/systems has incentivized the development of data-driven Remaining Useful Life (RUL) prognostics in the past years. However, most studies focus on point RUL prognostics, with limited insights into the uncer ...