Circular Image

Mahdi Naderibeni

4 records found

Authored

Learning Reduced-Order Mappings between Functions

An Investigation of Suitable Inputs and Outputs

Data-driven approaches are a promising new addition to the list of available strategies for solving Partial Differential Equations (PDEs). One such approach, the Principal Component Analysis-based Neural Network PDE solver, can be used to learn a mapping between two function spac ...

Learning Reduced Order Mappings of Navier-Stokes

An Investigation of Generalization on the Viscosity Parameter

Solving Partial Differential Equations (PDEs) in engineering such as Navier-Stokes is incredibly computationally expensive and complex. Without analytical solutions, numerical solutions can take ages to simulate at great expense. In order to reduce this cost, neural networks may ...

Data Driven Approximations Of PDEs

On Robustness of Reduced Order Mappings between Function Spaces Against Noise

This paper presents a comprehensive exploration of a novel method combining Principal Component Analysis (PCA) and Neural Networks (NN) to efficiently solve Partial Differential Equations (PDEs), a fundamental challenge in modeling a wide range of real-world phenomena. Our resear ...
Physics-Informed Neural Networks (PINNs) offer a promising approach to solving partial differential
equations (PDEs). In PINNs, physical laws are incorporated into the loss function, guiding the network to learn a model that adheres to these laws as defined by the PDEs. Train ...

Contributed

Learning Reduced-Order Mappings between Functions

An Investigation of Suitable Inputs and Outputs

Data-driven approaches are a promising new addition to the list of available strategies for solving Partial Differential Equations (PDEs). One such approach, the Principal Component Analysis-based Neural Network PDE solver, can be used to learn a mapping between two function spac ...

Learning Reduced-Order Mappings between Functions

An Investigation of Suitable Inputs and Outputs

Data-driven approaches are a promising new addition to the list of available strategies for solving Partial Differential Equations (PDEs). One such approach, the Principal Component Analysis-based Neural Network PDE solver, can be used to learn a mapping between two function spac ...

Learning Reduced Order Mappings of Navier-Stokes

An Investigation of Generalization on the Viscosity Parameter

Solving Partial Differential Equations (PDEs) in engineering such as Navier-Stokes is incredibly computationally expensive and complex. Without analytical solutions, numerical solutions can take ages to simulate at great expense. In order to reduce this cost, neural networks may ...

Learning Reduced Order Mappings of Navier-Stokes

An Investigation of Generalization on the Viscosity Parameter

Solving Partial Differential Equations (PDEs) in engineering such as Navier-Stokes is incredibly computationally expensive and complex. Without analytical solutions, numerical solutions can take ages to simulate at great expense. In order to reduce this cost, neural networks may ...

Data Driven Approximations Of PDEs

On Robustness of Reduced Order Mappings between Function Spaces Against Noise

This paper presents a comprehensive exploration of a novel method combining Principal Component Analysis (PCA) and Neural Networks (NN) to efficiently solve Partial Differential Equations (PDEs), a fundamental challenge in modeling a wide range of real-world phenomena. Our resear ...

Data Driven Approximations Of PDEs

On Robustness of Reduced Order Mappings between Function Spaces Against Noise

This paper presents a comprehensive exploration of a novel method combining Principal Component Analysis (PCA) and Neural Networks (NN) to efficiently solve Partial Differential Equations (PDEs), a fundamental challenge in modeling a wide range of real-world phenomena. Our resear ...
Physics-Informed Neural Networks (PINNs) offer a promising approach to solving partial differential
equations (PDEs). In PINNs, physical laws are incorporated into the loss function, guiding the network to learn a model that adheres to these laws as defined by the PDEs. Train ...
Physics-Informed Neural Networks (PINNs) offer a promising approach to solving partial differential
equations (PDEs). In PINNs, physical laws are incorporated into the loss function, guiding the network to learn a model that adheres to these laws as defined by the PDEs. Train ...