WJ

W. Jin

7 records found

Authored

Self-limiting gas-surface reactions lead to reaction fronts that penetrate nanoporous materials with a finite speed. We present a closed form theoretical model, validated against molecular simulations, that shows the influence of the fractal scaling law on the time needed to f ...

Nanoparticles are increasingly applied in a range of fields, such as electronics, catalysis, energy and medicine, due to their small sizes and consequent high surface-volume ratio. In many applications, it is attractive to coat the nanoparticles with a layer of different material ...
Direct Simulation Monte Carlo (DSMC) is a widely applied numerical technique to simulate rarefied gas flows. For flows around immersed moving objects, the use of body fitted meshes is inefficient, whereas published methods using cut-cells in a fixed background mesh have important ...
Coated nanoparticles have many potential applications; production of large quantities is feasible by atomic layer deposition (ALD) on nanoparticles in a fluidized bed reactor. However, due to the cohesive interparticle forces, nanoparticles form large agglomerates, which influenc ...
For simulating rarefied gas flows around a moving body, an immersed boundary method is presented here in conjunction with the Direct Simulation Monte Carlo (DSMC) method in order to allow the movement of a three dimensional immersed body on top of a fixed background grid. The sim ...