Hypergolic propellants have long been central to spacecraft propulsion because of their storability, reliability and rapid ignition. Conventional systems such as hydrazine derivatives paired with oxidisers like nitrogen tetroxide deliver ignition delays in the order of a few mill
...
Hypergolic propellants have long been central to spacecraft propulsion because of their storability, reliability and rapid ignition. Conventional systems such as hydrazine derivatives paired with oxidisers like nitrogen tetroxide deliver ignition delays in the order of a few milliseconds but pose serious risks due to extreme toxicity and handling hazards. The search for safer and environmentally friendlier alternatives has therefore become a priority in recent years. This review examines ignition delay times reported in the literature for both conventional and green propellants under ambient experimental conditions. Data were collected from published studies between 2000 and 2025 using major scientific databases, including Scopus, Web of Science, and Google Scholar, and are compared across three categories of propellants: traditional hydrazine-based systems, self-igniting ionic liquids and amines, and systems enhanced with catalytic or reactive promoters. The analysis shows that while conventional propellants remain benchmarks with ignition delays typically between 1 and 5 ms, some new formulations, particularly those containing reactive additives such as borohydrides or iodide salts, are achieving similar or improved performance in laboratory tests. The review also highlights that variability in reported ignition delays often stems from differences in test methods, droplet size, oxidiser concentration, and diagnostic approaches. Beyond performance considerations, attention is given to safety and environmental aspects since several green candidates reduce acute toxicity but introduce other challenges, such as instability or corrosive byproducts. By bringing together data in a comparative format and emphasising methodological limitations, this review aims to support the future design and evaluation of practical green hypergolic propellants.