HT
H. A. Tchelepi
55 records found
1
Striving to translate shale physics across ten orders of magnitude
What have we learned?
Shales will play an important role in the successful transition of energy from fossil-based resources to renewables in the coming decades. Aside from being a significant source of low-carbon intensity fuels, like natural gas, they also serve as geologic seals of subsurface format
...
Enhanced-oil-recovery (EOR) processes involve complex flow, transport, and thermodynamic interactions; as a result, compositional simulation is necessary for accurate representation of the physics. Flow simulation of compositional systems with high-resolution reservoir models is
...
We present a reservoir simulation framework for coupled thermal-compositional-mechanics processes. We use finite-volume methods to discretize the mass and energy conservation equations and finite-element methods for the mechanics problem. We use the first-order backward Euler for
...
We propose a two-stage preconditioner for accelerating the iterative solution by a Krylov subspace method of Biot’s poroelasticity equations based on a displacement-pressure formulation. The spatial discretization combines a finite element method for mechanics and a finite volume
...
Miscible gas injection is one of the most effective enhanced oil recovery techniques. There are several challenges in accurately modeling this process, which occurs in the near-miscible region. The adjustment of relative permeability for near-miscible processes is the main focus
...
A novel multiscale method for discrete fracture modeling on unstructured grids (MS-DFM) is developed. To this end, the DFM fine-scale discrete system is constructed using unstructured conforming cells for the matrix with lower-dimensional fracture elements placed at their interfa
...
We present a new fully-implicit, mixed-hybrid, finite-element (MHFE) discretization scheme for general-purpose compositional reservoir simulation. The locally conservative scheme solves the coupled momentum and mass balance equations simultaneously, and the fluid system is modele
...
Enhanced Oil Recovery (EOR) processes involve complex flow, transport, and thermodynamic interactions; as a result, compositional simulation is necessary for accurate representation of the physics. Flow simulation of compositional systems with high-resolution reservoir models is
...
A multiscale method for Discrete Fracture Modeling (DFM) using unstructured grids is developed. The fine-scale discrete system is obtained by imposing tetrahedron (triangular for 2D domains) shaped grid cells, while lower-dimensional fractures are imposed at the grid interfaces.
...
We present a fully implicit mixed hybrid finite-element (FE) formulation for general-purpose compositional reservoir simulation. The formulation is locally conservative, and the momentum and mass balance equations are solved simultaneously; including Lagrange multipliers on eleme
...
We present a new framework for solving coupled multi-physics problems. The objective is to develop a platform where different coupling strategies for the simulation of complex physical processes can be employed with great flexibility in order to find an optimal - in terms of robu
...
A multiscale method for Discrete Fracture Modeling (DFM) using unstructured grids is developed. The fine-scale discrete system is obtained by imposing tetrahedron (triangular for 2D domains) shaped grid cells, while lower-dimensional fractures are imposed at the grid interfaces.
...
In this paper, we propose a strategy to bypass the phase identification of fluid mixtures that can form three, or more, phases. The strategy is used for reservoir simulation of multicomponent, three-phase, thermal compositional displacement processes. Since the solution path in c
...
This paper presents a detailed numerical analysis of two methods for phase-behavior computations associated with thermal compositional reservoir simulation. Specifically, we analyze and compare the standard K-values approach with an Equation of State (EoS) model. We study steam a
...
Miscible gas injection is one of the most effective enhanced oil recovery (EOR) techniques. There are several challenges in accurately modeling this process that mostly occur in the near-miscible region. The adjustment of relative permeability for near-miscible processes is the m
...
Geological storage of carbon dioxide (CO2) is a promising technology for reducing atmospheric emissions. The large discrepancy in the time- and length-scales between up-dip migration of buoyant supercritical CO2 and the sinking fingers of dissolved CO2<
...
Steam Assistant Gravity Drainage (SAGD) is widely used to recover heavy oil and bitumen reservoirs. Typical SAGD operations involve a pair of horizontal wells separated vertically. Steam, or a steam-solvent mixture (e.g., Expanding- Solvent SAGD), is injected into the upper well
...
In this paper, we present a novel strategy for phase-state identification that can be used to bypass the need for full Equation-of-State Computations in multicomponent, multiphase thermal-compositional displacement processes. Analysis based on the Method of Characteristics (MOC)
...