Growing environmental concerns are driving demand for energy-saving strategies. Thermochromic smart windows offer a practical solution by passively regulating sunlight in homes and offices. Despite recent progress, current technologies still face challenges in achieving the therm
...
Growing environmental concerns are driving demand for energy-saving strategies. Thermochromic smart windows offer a practical solution by passively regulating sunlight in homes and offices. Despite recent progress, current technologies still face challenges in achieving the thermal durability and mechanical robustness necessary for long-term use, combined with a rapid transition below 30 °C. Here we report a thermochromic hydrogel assembled from poly(N,N-dimethylaminoethyl methacrylate) and 2,2,2-trifluoroethyl methacrylate that produces flexible films on a large scale. This hydrogel rapidly (~ 3 s) and reversibly becomes turbid above a tunable transition temperature spanning the human comfort zone, and maintains its thermochromic property even when mechanically stretched with 500% strain. The film’s high modulation of solar transmittance (70.6%) and luminous transmittance (85.7%) enables efficient sunlight screening in hot weather and clear vision in cool weather. Such ‘smart windows’ remain stable for over 10,000 heating/cooling cycles. These combined features indicate the hydrogel suitability for applications ranging from heat-modulating smart windows (architectural, automotive, etc.) to passive temperature indicators and even wearables.