The implementation of autonomous haulage trucks in open-pit mines represents a progressive advancement in the mining industry, but it poses potential safety risks that require thorough assessment. This study proposes an integrated model that combines discrete-event simulation (DE
...
The implementation of autonomous haulage trucks in open-pit mines represents a progressive advancement in the mining industry, but it poses potential safety risks that require thorough assessment. This study proposes an integrated model that combines discrete-event simulation (DES) with a risk matrix to assess collisions associated with three different operational scenarios, including non-autonomous, hybrid, and fully autonomous truck operations. To achieve these objectives, a comprehensive dataset was collected and analyzed using statistical models and natural language processing (NLP) techniques. Multiple scenarios were then developed and simulated to compare the risks of collision and evaluate the impact of eliminating human intervention in hauling operations. A risk matrix was designed to assess the collision likelihood and risk severity of collisions in each scenario, emphasizing the impact on both human safety and project operations. The results revealed an inverse relationship between the number of autonomous trucks and the frequency of collisions, underscoring the potential safety advantages of fully autonomous operations. The collision probabilities show an improvement of approximately 91.7% and 90.7% in the third scenario compared to the first and second scenarios, respectively. Furthermore, high-risk areas were identified at intersections with high traffic. These findings offer valuable insights into enhancing safety protocols and integrating advanced monitoring technologies in open-pit mining operations, particularly those utilizing autonomous haulage truck fleets.