A closer look at lithium-ion batteries in E-waste and the potential for a universal hydrometallurgical recycling process
J.J.M.M. van de Ven (TU Delft - Team Shoshan Abrahami)
Y Yang (TU Delft - Team Yongxiang Yang)
ST Abrahami (TU Delft - Team Shoshan Abrahami)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The demand for lithium-ion batteries (LiBs) is rising, resulting in a growing need to recycle the critical raw materials (CRMs) which they contain. Typically, all spent LiBs from consumer electronics end up in a single waste stream that is processed to produce black mass (BM) for further recovery. It is desired to design a recycling process that can deal with a mixture of LiBs. Hence, this study investigates the structure and composition of battery modules in common appliances such as laptops, power banks, smart watches, wireless earphones and mobile phones. The battery cells in the module were disassembled into cell casing, cathode, anode and separator. Then, the cathode active materials (CAMs) were characterized in detail with XRD-, SEM-, EDX- and ICP-OES-analysis. No direct link was found between the chemistry of the active materials (NMC, LCO, LMO, LFP etc.) and the application. Various BM samples were submitted to a leaching procedure (2 M H2SO4, 50 °C, 2 h, 60 g BM/L) with varying concentration (0–4 vol%) of H2O2 to study the influence of their chemical composition on the dissolution of Li, Ni, Mn and Co. Only a part of the BMs dissolved completely at 4 vol% H2O2, which was attributed to the oxidation state of the transition metals (TMs). Exact determination of H2O2 consumption by redox titration confirmed this hypothesis.