Review of Laser Sintering of Nanosilver Pastes for Die Attachment

Technologies and Trends

More Info
expand_more

Abstract

Nanosilver pastes have been regarded as the most promising die-attach materials for high-temperature and high-power applications due to their advantages such as excellent thermal conductivity, electrical conductivity, high temperature resistance, and good shear strength. However, the common hot pressing sintering process for nanosilver pastes has the limitations of long sintering time and complicated sintering processes. Thus, laser sintering has been proposed as a rapid sintering method that attracts increasing interest due to its advantages of high energy density, fast temperature rise, easy densification, etc. In this review, the recent advances in laser sintering processes were summarized, including pressure laser sintering, backside sintering, and hybrid bimodal laser sintering. The effects of various laser sintering process parameters on joint performance, such as laser power, sintering pressure, irradiation time, and defocusing amount, were further discussed. The rapid sintering mechanism of laser sintering silver nanoparticles(AgNPs) was revealed, while microscopic explanations need to be further explored. This review provided ideas and methods for subsequent researchers to develop rapid sintering methods for power electronic packaging.