GZ
G.Q. Zhang
488 records found
1
...
Solder joint reliability related to failures due to thermomechanical loading is a critically important yet physically complex engineering problem. As a result, simulated behavior is oftentimes computationally expensive. In an increasingly data-driven world, it is popular to use e
...
Residual stress and thermally induced warpage are critical reliability concerns in power electronic packaging, particularly when employing sintered copper nanoparticle (Cu NP) interconnects. While these interconnects provide high thermal and electrical performance, they also intr
...
This study investigates the interface strength and fracture behavior of sintered copper (Cu) nanoparticles (NPs) for all-Cu integration in advanced microelectronics packaging. Micro-cantilever bending tests on three configurations (Cu NP-notched, interface-notched and un-notched
...
Fan-Out Panel Level Package has become a trend in Silicon Carbide MOSFET packaging due to its superior electrothermal performance and cost-effectiveness. However, the increased size of multi-chip embedded FOPLP packaging introduces greater challenges in sample preparation and the
...
4H-SiC is widely employed in power electronic devices operating under high frequencies, voltages, and temperatures due to its exceptional physical properties. However, its inherent high hardness and elastic modulus induce inevitable residual stress during device fabrication. Rama
...
This paper investigates the effects of three ageing factors (chemical, humidity, and temperature) and their interactions on the physical properties and degradation of silicone sealant used in microelectronic applications. The thermal degradation of silicone sealants was investiga
...
Sintered nano-copper (Cu) improves the thermal performance of SiC MOSFET Fan-Out Panel-Level Packaging (FOPLP), a widely adopted method for miniaturizing electronic systems and modules. This study presented, for the first time, the prototyping and characterization of a 1.2 kV SiC
...
The three-step wet etching (TSWE) method has been proven to be a promising technique for fabricating silicon nanopores. Despite its potential, one of the bottlenecks of this method is the precise control of the silicon etching and etch-stop, which results in obtaining a well-defi
...
In harsh offshore environments, large-area sintered nano-copper (Cu) interconnections, which serve as die attachment material or thermal interface material (TIM), are prone to degradation from hydrogen sulfide (H2S) corrosion. This study introduced a film-forming technique based
...
The use of microRNAs as clinical cancer biomarkers is hindered by the absence of accurate, sensitive and rapid assays for their detection in biofluids. Here we report a biosensing approach, SpLig-HEMT, that combines an RNA splint-ligation reaction with an AlGaN/GaN high-electron-
...
The heat produced within the device in its package depends on the power supplied to each IP block. The improper placement of an IP block with high power consumption can become a reliability risk for IC packages, as it can significantly affect the reliability of solder balls due t
...
This article compares and evaluates the single pulse short-circuit robustness of silicon carbide (SiC) MOSFETs with linear and hexagonal cell topologies under different gate voltages, bus voltages, and case temperatures. The short-circuit failure mechanisms of the linear and hexa
...
The 1.2 kV SiC VDMOSFETs with varied JFET width (LJFET) are designed and fabricated in this study. The static and dynamic characteristics of each design are measured and compared. There is the best trade-off performance in the design of LJFET = 1.8 μm according to FOM (BV2/Ron) a
...
Optical micro-electromechanical systems (MEMS) demand exceptional precision, yet warpage during the die attach process on printed circuit boards can compromise performance. Here, a three-dimensional thermoelastic analytical model has been developed based on Fourier heat conductio
...
Graphdiyne (GDY)/two-dimensional materials (2DMs) heterostructures present unique opportunities for advanced optoelectronic and neuromorphic devices because of their exceptional electrical, optical, and structural properties. However, the traditional methods for construction of G
...
Triboelectric nanogenerator (TENG), advantageous in high energy density and flexibility, is promising as a sustainable energy source but can hardly be used to power edge devices directly due to its high-voltage AC output and varying capacitive impedance. To address it, this work
...
The degradation mechanisms of silicon carbide (SiC) VDMOSFET and trench metal oxide semiconductor field effect transistor (MOSFET) in a 60Co gamma irradiation environment were investigated. The degradation of electrical characteristics of SiC MOSFET in different working states af
...
Electronic components are complex systems consisting of a combination of different materials, which undergo degenerative changes over time following the second law of thermodynamics. The loss of their quality or functionality is reflected in degraded performance or behaviour of e
...
Sintered Cu nanoparticles (NPs) are promising for high-performance electronics due to their excellent thermal and electrical conductivity, as well as mechanical reliability. This study investigates the microscale mechanical behavior of sintered Cu NPs with a bimodal particle size
...
While silver-based sintered materials are limited by cost and electromigration, and copper faces challenges with oxidation at high temperatures, Cu-based composite sintering materials offer promising alternative solutions. This review examines recent advances in Cu-based composit
...