GZ
G.Q. Zhang
679 records found
1
...
This study investigates the size-dependent mechanical behavior and deformation mechanisms of sintered copper (Cu) nanoparticles (NPs) through micro-pillar (2–6 μm diameter) compression tests, scanning electron microscopy (SEM), transmission electron microscopy (TEM), transmission
...
The use of microRNAs as clinical cancer biomarkers is hindered by the absence of accurate, sensitive and rapid assays for their detection in biofluids. Here we report a biosensing approach, SpLig-HEMT, that combines an RNA splint-ligation reaction with an AlGaN/GaN high-electron-
...
This paper investigates the effects of three ageing factors (chemical, humidity, and temperature) and their interactions on the physical properties and degradation of silicone sealant used in microelectronic applications. The thermal degradation of silicone sealants was investiga
...
Silicon-Carbide (SiC) MOSFETs are widely used in high-power and high-efficiency applications such as electric vehicles and power supplies. However, long-term reliability remains a critical concern, particularly under extreme operating conditions. This work aims to explain the hea
...
High-energy Al ion implantation is an indispensable technique for achieving precise doping in fabricating 4H‑SiC devices. However, it inevitably introduces interfacial damage and residual stress that can compromise subsequent manufacturing processes and device reliability. Conven
...
The study focuses on the optical and electrical properties of Tungsten Ditelluride (WTe2), a type II Weyl semimetal, as well as the influence of its self-limiting oxide (SLO) layer that forms during natural oxidation. WTe2 exhibits promising applications in photodetection and ene
...
Triboelectric nanogenerator (TENG), advantageous in high energy density and flexibility, is promising as a sustainable energy source but can hardly be used to power edge devices directly due to its high-voltage AC output and varying capacitive impedance. To address it, this work
...
The mechanical strength of sintered nanoparticles (NPs) limits their application in advanced electronics packaging. In this study, we explore the anisotropy in the microstructure and mechanical properties of sintered copper (Cu) NPs by combining experimental techniques with molec
...
Graphdiyne (GDY)/two-dimensional materials (2DMs) heterostructures present unique opportunities for advanced optoelectronic and neuromorphic devices because of their exceptional electrical, optical, and structural properties. However, the traditional methods for construction of G
...
This Letter presents a combined analytical and experimental method to effectively decouple the radial and tangential residual stress fields induced by Berkovich nanoindentation in single-crystalline 4H-SiC using micro-Raman spectroscopy. By integrating the Raman stress characteri
...
This study presents a novel approach for localized silver (Ag) nanoparticles (NPs) sintering using microheater arrays embedded within the Si substrate. By applying controlled pulse currents, these microheaters generate targeted heat pulses, enabling rapid and localized sintering
...
In harsh offshore environments, large-area sintered nano-copper (Cu) interconnections, which serve as die attachment material or thermal interface material (TIM), are prone to degradation from hydrogen sulfide (H2S) corrosion. This study introduced a film-forming technique based
...
The degradation mechanisms of silicon carbide (SiC) VDMOSFET and trench metal oxide semiconductor field effect transistor (MOSFET) in a 60Co gamma irradiation environment were investigated. The degradation of electrical characteristics of SiC MOSFET in different working states af
...
The three-step wet etching (TSWE) method has been proven to be a promising technique for fabricating silicon nanopores. Despite its potential, one of the bottlenecks of this method is the precise control of the silicon etching and etch-stop, which results in obtaining a well-defi
...
Optical micro-electromechanical systems (MEMS) demand exceptional precision, yet warpage during the die attach process on printed circuit boards can compromise performance. Here, a three-dimensional thermoelastic analytical model has been developed based on Fourier heat conductio
...
With the miniaturization and high-power requirements of microelectronic devices, the current density carried by interconnects in packaging structures continually increases and reaches the threshold of electromigration (EM) failure. In this study, we investigated the microstructur
...
This article presents a novel in-package relative humidity (RH) sensor designed to enhance moisture detection within the chip encapsulation material, specifically epoxy molding compound (EMC). Traditional methods for assessing EMC moisture content, such as mass measurements, are
...
Van der Waals heterojunctions (vdWHs) have garnered significant attention for their promising applications in optoelectronics, attributed to their exceptional physical attributes. In this study, we present a straightforward approach to fabricating high-performance vdWHs photodete
...
In this study, we introduced a hybrid Potts-phase field model to simulate the co-evolution of grain growth and pores migration in sintered silver layers. The Potts model is good at capture the grain growth dynamics, while the phase field model describes the evolution of the porou
...
This study investigates the microstructure evolution and mechanical behavior of bimodal-sized sintered copper (Cu) nanoparticles (NPs) under varying sintering pressures. Micro-pillar compression tests reveal a transition from collapse-dominated to compaction-driven deformation as
...