Authored

20 records found

Effects of temperature and grain size on diffusivity of aluminium

Electromigration experiment and molecular dynamic simulation

Understanding the atomic diffusion features in metallic material is significant to explain the diffusion-controlled physical processes. In this paper, using electromigration experiments and molecular dynamic (MD) simulations, we investigate the effects of grain size and temperatu ...
In high power electronics packaging, sintered silver nanoparticle joints suffer from thermal-humidity- electrical-chemical joint driven corrosion in extreme environments. In this paper, we conducted aging tests on sintered silver nanoparticles under high-temperature, high-humidit ...

Luminous performances characterization of YAG

Ce3+ phosphor/silicone composites using both reflective and transmissive laser excitations

YAG: Ce3+ phosphor/silicone composites are widely used in solid-state lighting as a light converter to achieve white lighting. However, because of high thermal resistance and low thermal stability, the luminous performance of YAG: Ce3+ phosphor/silicone composite deteriorates rap ...

Sulfur-Rich Ageing Mechanism of Silicone Encapsulant Used in LED Packaging

An Experimental and Molecular Dynamic Simulation Study

In a light-emitting diode (LED) package, silicone encapsulant serves as a chip protector and enables the light to transmit, since it exhibits the advantages of high light transmittance, high refractive index, and high thermal stability. However, its reliability is still challenge ...
This paper presented integrated electromigration (EM) studies through experiment, theory, and simulation. First, extensive EM tests were performed using Blech and standard wafer-level electromigration acceleration test (SWEAT)-like structures, which were fabricated on four-inch w ...
This paper presented a comprehensive experimental and simulation study for thermomigration (TM) accompanying electromigration (EM) at elevated current densities. Both Blech and standard wafer-level electromigration acceleration test (SWEAT)-like test structures, with aluminum (Al ...
As a promising technology for high-power and high-temperature power electronics packaging, nanocopper (nanoCu) paste sintering has recently received increasing attention as a die-attachment. The high-temperature deformation of sintered nanoCu paste and its underlying mechanisms c ...
A molecular dynamics (MD) simulation was performed on the coalescence kinetics and mechanical behavior of the pressure-assisted Cu nanoparticles (NPs) sintering at low temperature. To investigate the effects of sintering pressure and temperature on the coalescence of the nanopart ...
MAlSiN3:Eu2+ (M = Ca, Sr) is commonly used in high-power phosphor-converted white-light-emitting diodes and laser diodes to promote their color-rendering index. However, the wide application of this phosphor is limited by the degradation of its luminescent properties in high-temp ...

The interface adhesion of CaAlSiN<sub>3</sub>

Eu<sup>2+</sup> phosphor/silicone used in light-emitting diode packaging: A first principles study

The CaAlSiN3:Eu2+ red phosphor and its silicone/phosphor composite are very promising materials used in the high color rendering white light-emitting diode (LED) packaging. However, the reliabilities of CaAlSiN3:Eu2+ and its composite are still being challenged by phosphor hydrol ...

Evaluating the moisture resistance of Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>

Ce<sup>3+</sup> phosphor used in high power white LED packaging

Owing to its low cost and high efficiency, the blue light-emitting diode (LED) chip covered with the Y3Al5O12:Ce3+ (YAG) phosphor has become a mainstream technology of high power white LED packaging. However, phosphors are often susceptible to degradation under high-temperature a ...
The power semiconductor joining technology through sintering of copper nanoparticles is well-suited for die attachment in wide bandgap (WBG) semiconductors, offering high electrical, thermal, and mechanical performances. However, sintered nanocopper will be prone to degradation r ...
The power semiconductor joining technology through sintering of copper nanoparticles is well-suited for die attachment in wide bandgap (WBG) semiconductors, offering high electrical, thermal, and mechanical performances. However, sintered nanocopper will be prone to degradation r ...
The power semiconductor joining technology through sintering of copper nanoparticles is well-suited for die attachment in wide bandgap (WBG) semiconductors, offering high electrical, thermal, and mechanical performances. However, sintered nanocopper will be prone to degradation r ...

Constitutive Modeling of Sintered Nano-silver Particles

A Variable-order Fractional Model versus an Anand Model

In high-power electronics packaging, nano-silver sintering technology has been widely applied due to its excellent electrical and thermal conductivity and its low-temperature packaging and high-temperature operation. In this study, 50-nm nano-silver particles are sintered at 275° ...
High-power white light-emitting diodes (LEDs) have demonstrated superior efficiency and reliability compared to traditional white light sources. However, ensuring maximum performance for a prolonged lifetime use presents a significant challenge for manufacturers and end users, es ...
Nano-metal materials have received considerable attention because of their promising performance in wide bandgap semiconductor packaging. In this study, molecular dynamics (MD) simulation was performed to simulate the nano-Cu sintering mechanism and the subsequent mechanical beha ...
Driving by the increased demand for hermetic packaging in the more than Moore (MtM) roadmap, a Cu nanoparticle sintering-enabled hermetic sealing solution was developed with a small-size sealing ring. The developed technology simplifies microfabrication and requires less surface ...
As a critical part of speeding up industrial electrification, power electronics, and its packaging technology are undergoing rapid development. Cu nanoparticle sintering technology has therefore received extensive attention for its excellent performance in the die-attachment laye ...
Some atrial contractile assist devices applied on the heart surface can be regarded as a laminated Liquid crystal elastomer (LCE) plate under steady temperature loads and a contact mechanical force. An exact solution for the deformation of the laminated LCE plate under combined t ...