JF
J. Fan
92 records found
1
This Letter presents a combined analytical and experimental method to effectively decouple the radial and tangential residual stress fields induced by Berkovich nanoindentation in single-crystalline 4H-SiC using micro-Raman spectroscopy. By integrating the Raman stress characteri
...
High-energy Al ion implantation is an indispensable technique for achieving precise doping in fabricating 4H‑SiC devices. However, it inevitably introduces interfacial damage and residual stress that can compromise subsequent manufacturing processes and device reliability. Conven
...
With the miniaturization and high-power requirements of microelectronic devices, the current density carried by interconnects in packaging structures continually increases and reaches the threshold of electromigration (EM) failure. In this study, we investigated the microstructur
...
This study investigates the size-dependent mechanical behavior and deformation mechanisms of sintered copper (Cu) nanoparticles (NPs) through micro-pillar (2–6 μm diameter) compression tests, scanning electron microscopy (SEM), transmission electron microscopy (TEM), transmission
...
The degradation mechanisms of silicon carbide (SiC) VDMOSFET and trench metal oxide semiconductor field effect transistor (MOSFET) in a 60Co gamma irradiation environment were investigated. The degradation of electrical characteristics of SiC MOSFET in different working states af
...
The mechanical strength of sintered nanoparticles (NPs) limits their application in advanced electronics packaging. In this study, we explore the anisotropy in the microstructure and mechanical properties of sintered copper (Cu) NPs by combining experimental techniques with molec
...
Optical micro-electromechanical systems (MEMS) demand exceptional precision, yet warpage during the die attach process on printed circuit boards can compromise performance. Here, a three-dimensional thermoelastic analytical model has been developed based on Fourier heat conductio
...
Van der Waals heterojunctions (vdWHs) have garnered significant attention for their promising applications in optoelectronics, attributed to their exceptional physical attributes. In this study, we present a straightforward approach to fabricating high-performance vdWHs photodete
...
This study investigates the interface strength and fracture behavior of sintered copper (Cu) nanoparticles (NPs) for all-Cu integration in advanced microelectronics packaging. Micro-cantilever bending tests on three configurations (Cu NP-notched, interface-notched and un-notched
...
In harsh offshore environments, large-area sintered nano-copper (Cu) interconnections, which serve as die attachment material or thermal interface material (TIM), are prone to degradation from hydrogen sulfide (H2S) corrosion. This study introduced a film-forming technique based
...
With the rapid development of new energy vehicles and offshore wind power systems in coastal cities, the application scale of power devices is constantly increasing. However, the corrosion problem of power packaging interconnection materials caused by the humid air and chlorine-r
...
Sintered Cu nanoparticles (NPs) are promising for high-performance electronics due to their excellent thermal and electrical conductivity, as well as mechanical reliability. This study investigates the microscale mechanical behavior of sintered Cu NPs with a bimodal particle size
...
This work addresses a novel technique for selecting the best process parameters for the 4H–SiC epitaxial layer in a horizontal hot-wall chemical vapor reactor using a transient multi-physical (thermal-fluid-chemical) simulation model and combined with a machine-learning model. An
...
This study demonstrates a breakdown analysis of the dynamics of a liquid crystal elastomer (LCE) including quality check, geometric measurement, thermal characterization, and comparison of heat- and light-induced contractions. A blue light-responsive acrylate side chain LCE with
...
Driven by the increasing demand for high-power systems, ceramic substrates have received more attention for handling higher power density. Warpage in active metal brazed (AMB) ceramic substrate becomes a critical issue as it can deteriorate the reliability performance. This study
...
Corrosion protection is one of the most important issues when copper is applied in power electronics packaging as bonding wire, die attachment, interconnection, and DBC substrate. Covering a layer of corrosion-resistant encapsulation material is a worthy consideration to protect
...
Insights into sulfur and hydrogen sulfide induced corrosion of sintered nanocopper paste
A combined experimental and ab initio study
The power semiconductor joining technology through sintering of copper nanoparticles is well-suited for die attachment in wide bandgap (WBG) semiconductors, offering high electrical, thermal, and mechanical performances. However, sintered nanocopper will be prone to degradation r
...
Tungsten disulfide (WS2) has recently attracted considerable attention owing to its excellent physical, chemical, electronic, and optical properties, leading to increased research into its applications in electronic and optoelectronic devices. However, the oxidation of 2D materia
...
Silicon carbide (SiC) MOSFETs, as leading wide bandgap semiconductor devices, exhibit superior stability and reliability under high-temperature, high-switching frequencies, and high-power density operational conditions. SiC MOSFET with fan-out panel-level packaging (FOPLP) utiliz
...
Avalanche Ruggedness Evaluation on Planar and Trench SiC MOSFETs
An Experimental and TCAD Simulation Study
In the domain of power electronics, especially for applications requiring high power, high temperature, and high frequency, Silicon Carbide Metal Oxide Semiconductor Field-Effect Transistors (SiC MOSFETs) stand out due to their excellent properties such as high thermal conductivi
...