HT

Authored

20 records found

Overdriving reliability of chip scale packaged LEDs

Quantitatively analyzing the impact of component

The objective of this study is to quantitatively evaluate the impacts of LED components on the overdriving reliability of high power white LED chip scale packages (CSPs). The reliability tests under room temperature are conducted over 1000 h in this study on CSP LEDs with overdri ...
The sensing behavior of monolayer tin sulfide (SnS) for four gas molecules (NH3, NO2, CO, and H2O) are studied by the first-principle calculation based on density-functional theory. We calculate adsorption energy, adsorption distance, and Hirshfeld charge to estimate the adsorpti ...
Heat transfer across thermal interface material, such as graphene-polymer composite, is a critical issue for microelectronics thermal management. To improve its thermal performance, we use chemical functionalization on the graphene with hydrocarbon chains in this work. Molecular ...
This paper analyzes the mechanical properties of tungsten disulfide (WS2) by means of multiscale simulation, including density functional theory (DFT), molecular dynamic (MD) analysis, and finite element analysis (FEA). We first conducted MD analysis to calculate the mechanical p ...
2D and nanostructured metal sulfide materials are promising in the advancement of several gas sensing applications due to the abundant choice of materials with easily tunable electronic, optical, physical, and chemical properties. These applications are particularly attractive fo ...

Germanene on single-layer ZnSe substrate

Novel electronic and optical properties

In this work, the structural, electronic and optical properties of germanene and ZnSe substrate nanocomposites have been investigated using first-principles calculations. We found that the large direct-gap ZnSe semiconductors and zero-gap germanene form a typical orbital hybridiz ...
In this study, the structural, electronic and optical properties of a tungsten disulfide (WS2) hybrid with indium-gallium-zinc-oxide (IGZO) heterostructures were investigated based on density functional theory (DFT) calculations. According to the results of binding energy, charge ...
In this study, the structural, electronic and optical properties of a tungsten disulfide (WS2) hybrid with indium-gallium-zinc-oxide (IGZO) heterostructures were investigated based on density functional theory (DFT) calculations. According to the results of binding energy, charge ...
Double-sided packages for heat dissipation are an efficient thermal management mechanism for power semiconductor devices. A fan-out panel-level packaging (FOPLP), as one of the double-sided forms, exhibits excellent electro–thermal characteristics and provides low stray inductanc ...
In this paper, tin oxidation (SnO x )/tin-sulfide (SnS) heterostructures are synthesized by the post-oxidation of liquid-phase exfoliated SnS nanosheets in air. We comparatively analyzed the NO2 gas response of samples with different oxidation levels to study the gas sensing mech ...
In this paper, four composite coatings of nano-SnS/polyvinylbutyral (PVB), nano-MoS2/PVB, nano-SnS-Zn/PVB, and nano-MoS2-Zn/PVB were prepared, and their anti-corrosion mechanism was analyzed by experimental and theoretical calculations. The results of the electrochemical experime ...
Nanostructured materials have attracted more and more attention in the applications of gas sensing due to their high specific surface area, numerous surface-active sites, as well as the effect of crystal facets with high surface reactivity. These kinds of gas sensors are mainly u ...
As an increasing attention towards sustainable development of energy and environment, the power electronics (PEs) are gaining more and more attraction on various energy systems. The insulated gate bipolar transistor (IGBT), as one of the PEs with numerous advantages and potential ...
In this paper, the heat transfer performance of the multi-chip (MC) LED module is investigated numerically by using a general analytical solution. The configuration of the module is optimized with genetic algorithm (GA) combined with a response surface methodology. The space betw ...
Humidity sensors based on flexible sensitive nanomaterials are very attractive in noncontact healthcare monitoring. However, the existing humidity sensors have some shortcomings such as limited sensitivity, narrow relative humidity (RH) range, and a complex process. Herein, we sh ...
Humidity sensors based on flexible sensitive nanomaterials are very attractive in noncontact healthcare monitoring. However, the existing humidity sensors have some shortcomings such as limited sensitivity, narrow relative humidity (RH) range, and a complex process. Herein, we sh ...
Humidity sensors based on flexible sensitive nanomaterials are very attractive in noncontact healthcare monitoring. However, the existing humidity sensors have some shortcomings such as limited sensitivity, narrow relative humidity (RH) range, and a complex process. Herein, we sh ...
In this work, one layout model of insulated gate bipolar transistor (IGBT) module are built by using a general analytical solution, which is used to analyze the effect of thermal spreading resistance on the whole temperature distribution of a rectangular board with multiple eccen ...
SnS monolayer has sparked intensive attention due to its unique electronic and optical properties. We systemically investigate the electronic properties of SnS by first-principles calculation. Our results show that the monolayer possesses indirect bandgap. We further perform mech ...
In this work, a thin-film transistor gas sensor based on the p-N heterojunction is fabricated by stacking chemical vapor deposition-grown tungsten disulfide (WS2) with a sputtered indium-gallium-zinc-oxide (IGZO) film. To the best of our knowledge, the present device has the best ...