ZY

Zhoudong Yang

16 records found

Residual stress and thermally induced warpage are critical reliability concerns in power electronic packaging, particularly when employing sintered copper nanoparticle (Cu NP) interconnects. While these interconnects provide high thermal and electrical performance, they also intr ...
4H-SiC is widely employed in power electronic devices operating under high frequencies, voltages, and temperatures due to its exceptional physical properties. However, its inherent high hardness and elastic modulus induce inevitable residual stress during device fabrication. Rama ...
This Letter presents a combined analytical and experimental method to effectively decouple the radial and tangential residual stress fields induced by Berkovich nanoindentation in single-crystalline 4H-SiC using micro-Raman spectroscopy. By integrating the Raman stress characteri ...
While silver-based sintered materials are limited by cost and electromigration, and copper faces challenges with oxidation at high temperatures, Cu-based composite sintering materials offer promising alternative solutions. This review examines recent advances in Cu-based composit ...
Accurate characterization and calculation of the interfacial stresses are of key importance for the optimization of the chip sintering process and the evaluation of the long-term reliability of the chip interconnect. In this study, the pioneering application of confocal Raman spe ...
This work investigated the impact of die-attach fillet geometry on the reliability of epoxy-based pressure-less sintered silver joints. Three types of sintered silver samples (Ag-0, Ag-1, and Ag-2) with 0%, 1%, and 2% epoxy content were prepared and characterized. Nanoindentation ...
Pressureless sintered silver pastes composed of submicron particles represent a promising, cost-effective interconnect solution for power electronics. While epoxy additives are often introduced to modify solvent behavior and enhance mechanical integrity, they can simultaneously d ...
The mechanical reliability of sintered silver joints, widely used in power electronics packaging, is critical for long-term applications such as electric vehicle converters. However, conventional homogeneous modeling often oversimplifies internal microstructural variations and li ...
High-energy Al ion implantation is an indispensable technique for achieving precise doping in fabricating 4H‑SiC devices. However, it inevitably introduces interfacial damage and residual stress that can compromise subsequent manufacturing processes and device reliability. Conven ...
Optical micro-electromechanical systems (MEMS) demand exceptional precision, yet warpage during the die attach process on printed circuit boards can compromise performance. Here, a three-dimensional thermoelastic analytical model has been developed based on Fourier heat conductio ...
With the increased deployment of power modules in demanding conditions, sintering materials, especially composite sintering materials, have raised growing interest due to their cost-effectiveness and suitability. Therefore, this study explores the viability of Cu–Ag composite sin ...
In the rapidly evolving era of information and intelligence,microelectronic devices are pivotal across various fields, such as mobile devices, big data computing, electric vehicles, and aerospace. However, the electrical performance of these devices often suffers due to residual ...
4H-SiC is widely used in power electronics owing to its superior physical properties. However, temperature-induced stresses compromise the reliability of 4H-SiC power devices in high-temperature applications, warranting precise, and nondestructive stress characterization responsi ...
The power semiconductor joining technology through sintering of copper nanoparticles is well-suited for die attachment in wide bandgap (WBG) semiconductors, offering high electrical, thermal, and mechanical performances. However, sintered nanocopper will be prone to degradation r ...
With the popularization of wide band-gap power modules in offshore wind power systems and water surface photovoltaic power stations, packaging materials face challenges of corrosion by salt, blended with high humidity. Copper-silver (Cu-Ag) composite sintered paste was proposed b ...
Power modules applied in offshore applications are facing risks of corrosion failures on die-attach materials due to high humidity and H2S exposure. To investigate such corrosion behavior for sintered die-attach materials, we conducted a study with four groups of sampl ...