X. Liu
34 records found
1
Graphene is widely used to reinforce metal matrix composites due to its excellent physical and mechanical properties. However, its poor interfacial wettability and dispersion problems in copper-based brazing filler metals still limit its application effect.This study explored the
...
Nano-copper (nano-Cu) sintering is a promising lead-free interconnection technology for advanced electronic packaging due to its high electrical conductivity. However, practical applications are hindered by oxidation and limited sintering efficiency. Carbon nanotube (CNT) doping
...
With the rapid advancement of power semiconductor packaging technologies, Smart P2 Packagingaging has emerged as a pivotal innovation for enhancing system performance and miniaturization. This study systematically investigates the thermal conduction characteristics and stress dis
...
Prognostic monitoring of power quad flat no-lead (PQFN) packages with four distinct silver pastes, each varying in material composition (pure-Ag and resin-reinforced hybridAg) and sintering processes (pressure-assisted and pressureless), was investigated in this study. The PQFN p
...
Chitosan Oligosaccharide Laser Lithograph
A Facile Route to Porous Graphene Electrodes for Flexible On-Chip Microsupercapacitors
In this study, a convenient chitosan oligosaccharide laser lithograph (COSLL) technology was developed to fabricate laser-induced graphene (LIG) electrodes and flexible on-chip microsupercapacitors (MSCs). With a simple one-step CO2 laser, the pyrolysis of a chitosan o
...
Insights into sulfur and hydrogen sulfide induced corrosion of sintered nanocopper paste
A combined experimental and ab initio study
The power semiconductor joining technology through sintering of copper nanoparticles is well-suited for die attachment in wide bandgap (WBG) semiconductors, offering high electrical, thermal, and mechanical performances. However, sintered nanocopper will be prone to degradation r
...
The significance of wafer bonding is fundamental to the progression of electronic systems. Common fabrication techniques for Cu pillars play a crucial role in establishing resilient and efficient interconnects within semiconductor devices. It is imperative to explore the potentia
...
During operation in environments containing hydrogen sulfide (H2S), such as in offshore and coastal environments, sintered nanoCu in power electronics is susceptible to degradation caused by corrosion. In this study, experimental and molecular dynamics (MD) simulation
...
Substrate metallization is a crucial factor affecting the mechanical properties of sintered nanoparticles in microelectronics applications, as it is essential for ensuring good adhesion between the substrate and the sintered material. In this study, we investigated the influence
...
The rapid development of power electronics has challenged the thermal integrity of semiconductor packaging. Further developments in this domain can be supported significantly by utilizing fast and flexible thermal characteristic evaluation. This study employs the transient dual i
...
Laser-induced graphene (LIG) has aroused a wide range of research interests ranging from micro-nano energy devices to the Internet of Things (IoT). Nevertheless, the non-degradability of most-used synthetic polymer carbon sources poses a serious threat to the environment. In this
...
High temperature viscoplastic deformation behavior of sintered nanocopper paste used in power electronics packaging
Insights from constitutive and multi-scale modelling
As a promising technology for high-power and high-temperature power electronics packaging, nanocopper (nanoCu) paste sintering has recently received increasing attention as a die-attachment. The high-temperature deformation of sintered nanoCu paste and its underlying mechanisms c
...
This paper proposes and simulates research on the reverse recovery characteristics of two novel superjunction (SJ) MOSFETs by adjusting the doping profile. In the manufacturing process of the SJ MOSFET using multilayer epitaxial deposition (MED), the position and concentration of
...
The fabrication of flexible pressure sensors with low cost, high scalability, and easy fabrication is an essential driving force in developing flexible electronics, especially for high-performance sensors that require precise surface microstructures. However, optimizing complex f
...
Understanding the interaction of nucleotides with UVC light
An insight from quantum chemical calculation-based findings
Short-wave ultraviolet (also called UVC) irradiation is a well-adopted method of viral inactivation due to its ability to damage genetic material. A fundamental problem with the UVC inactivation method is that its mechanism of action on viruses is still unknown at the molecular l
...
Robust bonding of Cu quasi-nanoparticles sintering for Ag coated chip and bare copper substrate was achieved. The effect of temperature, pressure and time on the sintering bonding strength and microstructural evolution was deeply studied. 36.5 MPa shear strength was achieved when
...
Owing to the outstanding physical properties of graphene, its biosensing applications implemented by the terahertz metasurface are widely concerned and studied. Here, we present a novel design of the graphene metasurface, which consists of an individual graphene ring and an H-sha
...
Recent reports focus on the hydrogenation engineering of monolayer boron phosphide and simultaneously explore its promising applications in nanoelectronics. Coupling density functional theory and finite element method, we investigate the bowtie triangle ring microstructure compos
...
The wide-bandgap semiconductors represented by GaN have a broad application prospect because of their high service temperature and high switch frequency. Quad-Flat-No-Lead (QFN) Package is currently one of the mainstream packaging methods due to its low cost and high efficiency.
...