Circular Image

X. Liu

31 records found

During operation in environments containing hydrogen sulfide (H2S), such as in offshore and coastal environments, sintered nanoCu in power electronics is susceptible to degradation caused by corrosion. In this study, experimental and molecular dynamics (MD) simulation ...
The significance of wafer bonding is fundamental to the progression of electronic systems. Common fabrication techniques for Cu pillars play a crucial role in establishing resilient and efficient interconnects within semiconductor devices. It is imperative to explore the potentia ...

Chitosan Oligosaccharide Laser Lithograph

A Facile Route to Porous Graphene Electrodes for Flexible On-Chip Microsupercapacitors

In this study, a convenient chitosan oligosaccharide laser lithograph (COSLL) technology was developed to fabricate laser-induced graphene (LIG) electrodes and flexible on-chip microsupercapacitors (MSCs). With a simple one-step CO2 laser, the pyrolysis of a chitosan o ...
Prognostic monitoring of power quad flat no-lead (PQFN) packages with four distinct silver pastes, each varying in material composition (pure-Ag and resin-reinforced hybridAg) and sintering processes (pressure-assisted and pressureless), was investigated in this study. The PQFN p ...
The power semiconductor joining technology through sintering of copper nanoparticles is well-suited for die attachment in wide bandgap (WBG) semiconductors, offering high electrical, thermal, and mechanical performances. However, sintered nanocopper will be prone to degradation r ...
As a promising technology for high-power and high-temperature power electronics packaging, nanocopper (nanoCu) paste sintering has recently received increasing attention as a die-attachment. The high-temperature deformation of sintered nanoCu paste and its underlying mechanisms c ...

Understanding the interaction of nucleotides with UVC light

An insight from quantum chemical calculation-based findings

Short-wave ultraviolet (also called UVC) irradiation is a well-adopted method of viral inactivation due to its ability to damage genetic material. A fundamental problem with the UVC inactivation method is that its mechanism of action on viruses is still unknown at the molecular l ...
Substrate metallization is a crucial factor affecting the mechanical properties of sintered nanoparticles in microelectronics applications, as it is essential for ensuring good adhesion between the substrate and the sintered material. In this study, we investigated the influence ...
The rapid development of power electronics has challenged the thermal integrity of semiconductor packaging. Further developments in this domain can be supported significantly by utilizing fast and flexible thermal characteristic evaluation. This study employs the transient dual i ...
Laser-induced graphene (LIG) has aroused a wide range of research interests ranging from micro-nano energy devices to the Internet of Things (IoT). Nevertheless, the non-degradability of most-used synthetic polymer carbon sources poses a serious threat to the environment. In this ...
This paper proposes and simulates research on the reverse recovery characteristics of two novel superjunction (SJ) MOSFETs by adjusting the doping profile. In the manufacturing process of the SJ MOSFET using multilayer epitaxial deposition (MED), the position and concentration of ...
The fabrication of flexible pressure sensors with low cost, high scalability, and easy fabrication is an essential driving force in developing flexible electronics, especially for high-performance sensors that require precise surface microstructures. However, optimizing complex f ...
Robust bonding of Cu quasi-nanoparticles sintering for Ag coated chip and bare copper substrate was achieved. The effect of temperature, pressure and time on the sintering bonding strength and microstructural evolution was deeply studied. 36.5 MPa shear strength was achieved when ...
Owing to the outstanding physical properties of graphene, its biosensing applications implemented by the terahertz metasurface are widely concerned and studied. Here, we present a novel design of the graphene metasurface, which consists of an individual graphene ring and an H-sha ...
The continuous trend to integrate more multi-functions in a package often involves, Heterogeneous Integration of multi-functional blocks in some kind of 3D stacking. The conventional flip chip for die-on-substrate technology applies solder for integration. However, solder joint i ...
The wide-bandgap semiconductors represented by GaN have a broad application prospect because of their high service temperature and high switch frequency. Quad-Flat-No-Lead (QFN) Package is currently one of the mainstream packaging methods due to its low cost and high efficiency. ...
Nano-copper sintering is one of new die-attachment and interconnection solutions to realize the wide bandgap semiconductor power electronics packaging with benefits on high temperature, low inductance, low thermal resistance and low cost. Aiming to assess the high-temperature rel ...
Hexagonal boron nitride (BN) is often used as filler to improve the thermal conductivity of polymer matrix due to its high thermal conductivity. However, previously reported BN-based composites always have a high in-plane thermal conductivity, which is not beneficial for vertical ...
Nano copper sintering technology has great potential to be widely applied in the wide-bandgap semiconductor packaging. In order to investigate the coalescence kinetics of copper nano particles for this application, a molecular dynamic (MD) simulation was carried out at low temper ...