Aerial Base Station Placement Leveraging Radio Tomographic Maps
Daniel Romero (University of Agder)
Pham Q. Viet (University of Agder)
Geert J.T. Leus (TU Delft - Signal Processing Systems)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Mobile base stations on board unmanned aerial vehicles (UAVs) promise to deliver connectivity to those areas where the terrestrial infrastructure is overloaded, damaged, or absent. A fundamental problem in this context involves determining a minimal set of locations in 3D space where such aerial base stations (ABSs) must be deployed to provide coverage to a set of users. While nearly all existing approaches rely on average characterizations of the propagation medium, this work develops a scheme where the actual channel information is exploited by means of a radio tomographic map. A convex optimization approach is presented to minimize the number of required ABSs while ensuring that the UAVs do not enter no-fly regions. A simulation study reveals that the proposed algorithm markedly outperforms its competitors.