Local Stackelberg equilibrium seeking in generalized aggregative games
Filippo Fabiani (University of Oxford)
Mohammad Amin Tajeddini (University of Tehran)
Hamed Kebriaei (University of Tehran)
S. Grammatico (TU Delft - Team Sergio Grammatico, TU Delft - Team Bart De Schutter)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
We propose a two-layer, semi-decentralized algorithm to compute a local solution to the Stackelberg equilibrium problem in aggregative games with coupling constraints. Specifically, we focus on a single-leader, multiple follower problem, and after equivalently recasting the Stackelberg game as a mathematical program with complementarity constraints (MPCC), we iteratively convexify a regularized version of the MPCC as inner problem, whose solution generates a sequence of feasible descent directions for the original MPCC. Thus, by pursuing a descent direction at every outer iteration, we establish convergence to a local Stackelberg equilibrium. Finally, the proposed algorithm is tested on a numerical case study, a hierarchical instance of the charging coordination problem of Plug-in Electric Vehicles (PEVs).