ExploRLLM
Guiding Exploration in Reinforcement Learning with Large Language Models
Runyu Ma (Student TU Delft)
Jelle Luijkx (TU Delft - Learning & Autonomous Control)
Zlatan Ajanovic (RWTH Aachen University)
Jens Kober (TU Delft - Learning & Autonomous Control)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
In robot manipulation, Reinforcement Learning (RL) often suffers from low sample efficiency and uncertain convergence, especially in large observation and action spaces. Foundation Models (FMs) offer an alternative, demonstrating promise in zero-shot and few-shot settings. However, they can be unreliable due to limited physical and spatial understanding. We introduce ExploRLLM, a method that combines the strengths of both paradigms. In our approach, FMs improve RL convergence by generating policy code and efficient representations, while a residual RL agent compensates for the FMs' limited physical understanding. We show that Explorllm outperforms both policies derived from FMs and RL baselines in table-top manipulation tasks. Additionally, real-world experiments show that the policies exhibit promising zero-shot sim-to-real transfer. Supplementary material is available at https://explorllm.github.io.
Files
File under embargo until 02-03-2026