Circular Image

J. Kober

89 records found

Engine Agnostic Graph Environments for Robotics (EAGERx)

A Graph-Based Framework for Sim2real Robot Learning

Sim2real, that is, the transfer of learned control policies from simulation to the real world, is an area of growing interest in robotics because of its potential to efficiently handle complex tasks. The sim2real approach faces challenges because of mismatches between simulation ...

Noise-conditioned Energy-based Annealed Rewards (NEAR)

A generative framework for imitation learning from observation

This paper introduces a new imitation learning framework based on energy-based generative models capable of learning complex, physics-dependent, robot motion policies through state-only expert motion trajectories. Our algorithm, called Noise-conditioned Energy-based Annealed Rewa ...

On-the-Fly Jumping With Soft Landing

Leveraging Trajectory Optimization and Behavior Cloning

Quadrupedal jumping has been intensively investigated in recent years. Still, realizing controlled jumping with soft landings remains an open challenge due to the complexity of the jump dynamics and the need to perform complex computations during the short time. This work tackles ...

REX

GPU-Accelerated Sim2Real Framework with Delay and Dynamics Estimation

Sim2real, the transfer of control policies from simulation to the real world, is crucial for efficiently solving robotic tasks without the risks associated with real-world learning. How-ever, discrepancies between simulated and real environments, especially due to unmodeled dynam ...
Learning from Interactive Demonstrations has revolutionized the way nonexpert humans teach robots. It is enough to kinesthetically move the robot around to teach pick-and-place, dressing, or cleaning policies. However, the main challenge is correctly generalizing to novel situati ...

ILeSiA

Interactive Learning of Robot Situational Awareness From Camera Input

Learning from demonstration is a promising approach for teaching robots new skills. However, a central challenge in the execution of acquired skills is the ability to recognize faults and prevent failures. This is essential because demonstrations typically cover only a limited se ...

ExploRLLM

Guiding Exploration in Reinforcement Learning with Large Language Models

In robot manipulation, Reinforcement Learning (RL) often suffers from low sample efficiency and uncertain convergence, especially in large observation and action spaces. Foundation Models (FMs) offer an alternative, demonstrating promise in zero-shot and few-shot settings. Howeve ...

RACP

Risk-Aware Contingency Planning with Multi-Modal Predictions

For an autonomous vehicle to operate reliably within real-world traffic scenarios, it is imperative to assess the repercussions of its prospective actions by anticipating the uncertain intentions exhibited by other participants in the traffic environment. Driven by the pronounced ...
Individual pitch control (IPC) has been thoroughly researched for its ability to reduce wind turbine blade and tower fatigue loads. Conventional IPC often uses the multiblade coordinate (MBC) transformation and aims for full attenuation of the oscillating loads. However, this als ...
Deep reinforcement learning (DRL) has emerged as a promising solution to mastering explosive and versatile quadrupedal jumping skills. However, current DRL-based frameworks usually rely on pre-existing reference trajectories obtained by capturing animal motions or transferring ex ...

Noise-conditioned Energy-based Annealed Rewards (NEAR)

A generative framework for imitation learning from observation

This paper introduces a new imitation learning framework based on energy-based generative models capable of learning complex, physics-dependent, robot motion policies through state-only expert motion trajectories. Our algorithm, called Noise-conditioned Energy-based Annealed Rewa ...
Objectives: To develop and validate a questionnaire on dental students' self-efficacy with tooth removal, suitable for measuring the effectiveness of training methods. Methods: To prepare and validate this questionnaire, we used the Association of Medical Education in Europe (AME ...

PUMA

Deep Metric Imitation Learning for Stable Motion Primitives

Imitation learning (IL) facilitates intuitive robotic programming. However, ensuring the reliability of learned behaviors remains a challenge. In the context of reaching motions, a robot should consistently reach its goal, regardless of its initial conditions. To meet this requir ...
The estimation of probability density functions is a fundamental problem in science and engineering. However, common methods such as kernel density estimation (KDE) have been demonstrated to lack robustness, while more complex methods have not been evaluated in multi-modal estima ...
Performing bimanual tasks with dual robotic setups can drastically increase the impact on industrial and daily life applications. However, performing a bimanual task brings many challenges, such as synchronization and coordination of the single-arm policies. This article proposes ...
A central challenge in Learning from Demonstration is to generate representations that are adaptable and can generalize to unseen situations. This work proposes to learn such a representation without using task-specific heuristics within the context of multi-reference frame skill ...
Formulating the dynamics of continuously deformable objects and other mechanical systems analytically from first principles is an exceedingly challenging task, often impractical in real-world scenarios. What makes this challenge even harder to solve is that, usually, the object h ...
With the aim of further enabling the exploitation of intentional impacts in robotic manipulation, a control framework is presented that directly tackles the challenges posed by tracking control of robotic manipulators that are tasked to perform nominally simultaneous impacts. Thi ...

Quadrupedal Locomotion With Parallel Compliance

E-Go Design, Modeling, and Control

To promote the research in compliant quadrupedal locomotion, especially with parallel elasticity, we present Delft E-Go, which is an easily accessible quadruped that combines the Unitree Go1 with open-source mechanical add-ons and control architecture. Implementing this novel sys ...

Do You Need a Hand?

A Bimanual Robotic Dressing Assistance Scheme

Developing physically assistive robots capable of dressing assistance has the potential to significantly improve the lives of the elderly and disabled population. However, most robotics dressing strategies considered a single robot only, which greatly limited the performance of t ...