RACP

Risk-Aware Contingency Planning with Multi-Modal Predictions

Journal Article (2025)
Author(s)

K.A. Mustafa (TU Delft - Learning & Autonomous Control)

Daniel Jarne Ornia (TU Delft - Learning & Autonomous Control)

Jens Kober (TU Delft - Learning & Autonomous Control)

Javier Alonso-Mora (TU Delft - Learning & Autonomous Control)

Research Group
Learning & Autonomous Control
DOI related publication
https://doi.org/10.1109/TIV.2024.3411530
More Info
expand_more
Publication Year
2025
Language
English
Research Group
Learning & Autonomous Control
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/publishing/publisher-deals Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.@en
Issue number
1
Volume number
10
Pages (from-to)
228-243
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

For an autonomous vehicle to operate reliably within real-world traffic scenarios, it is imperative to assess the repercussions of its prospective actions by anticipating the uncertain intentions exhibited by other participants in the traffic environment. Driven by the pronounced multi-modal nature of human driving behavior, this paper presents an approach that leverages Bayesian beliefs over the distribution of potential policies of other road users to construct a novel risk-aware probabilistic motion planning framework. In particular, we propose a novel contingency planner that outputs long-term contingent plans conditioned on multiple possible intents for other actors in the traffic scene. The Bayesian belief is incorporated into the optimization cost function to influence the behavior of the short-term plan based on the likelihood of other agents' policies. Furthermore, a probabilistic risk metric is employed to fine-tune the balance between efficiency and robustness. Through a series of closed-loop safety-critical simulated traffic scenarios shared with human-driven vehicles, we demonstrate the practical efficacy of our proposed approach that can handle multi-vehicle scenarios.

Files

RACP_Risk-Aware_Contingency_Pl... (pdf)
(pdf | 3.88 Mb)
- Embargo expired in 07-12-2024
License info not available