Circular Image

J. Alonso-Mora

127 records found

Deployment of robots in dynamic environments requires reactive trajectory generation. While optimization-based methods, such as Model Predictive Control focus on constraint verificaction, Geometric Fabrics offer a computationally efficient way to generate trajectories that includ ...
Representing the 3D environment with instance-aware semantic and geometric information is crucial for interaction-aware robots in dynamic environments. Nevertheless, creating such a representation poses challenges due to sensor noise, instance segmentation and tracking errors, an ...
To efficiently deploy robotic systems in society, mobile robots must move autonomously and safely through complex environments. Nonlinear model predictive control (MPC) methods provide a natural way to find a dynamically feasible trajectory through the environment without collidi ...
Navigating mobile robots in social environments remains a challenging task due to the intricacies of human-robot interactions. Most of the motion planners designed for crowded and dynamic environments focus on choosing the best velocity to reach the goal while avoiding collisions ...
Mobile manipulators operating in dynamic environments shared with humans and robots must adapt in real time to environmental changes to complete their tasks effectively. While global planning methods are effective at considering the full task scope, they lack the computational ef ...
In this paper, we present an approach for fleet sizing in the context of flash delivery, a time-sensitive delivery service that requires the fulfilment of customer requests in minutes. Our approach effectively combines individual delivery requests into groups and generates optimi ...
Control Barrier Functions (CBFs) have proven to be an effective tool for performing safe control synthesis for nonlinear systems. However, guaranteeing safety in the presence of disturbances and input constraints for high relative degree systems is a difficult problem. In this wo ...

RACP

Risk-Aware Contingency Planning with Multi-Modal Predictions

For an autonomous vehicle to operate reliably within real-world traffic scenarios, it is imperative to assess the repercussions of its prospective actions by anticipating the uncertain intentions exhibited by other participants in the traffic environment. Driven by the pronounced ...
Quadrotors can carry slung loads to hard-to-reach locations at high speed. Given that a single quadrotor has limited payload capacities, using a team of quadrotors to collaboratively manipulate the full pose of a heavy object is a scalable and promising solution. However, existin ...
Navigation Among Movable Obstacles (NAMO) poses a challenge for traditional path-planning methods when obstacles block the path, requiring push actions to reach the goal. We propose a framework that enables movability-aware planning to overcome this challenge without relying on e ...
We present a vehicle system capable of navigating safely and efficiently around Vulnerable Road Users (VRUs), such as pedestrians and cyclists. The system comprises key modules for environment perception, localization and mapping, motion planning, and control, integrated into a p ...
Dense 3D semantic occupancy perception is critical for mobile robots operating in pedestrian-rich environments, yet it remains underexplored compared to its application in autonomous driving. To address this gap, we present MobileOcc, a semantic occupancy dataset for mobile robot ...

TamedPUMA

Safe and stable imitation learning with geometric fabrics

Using the language of dynamical systems, Imitation learning (IL) provides an intuitive and effective way of teaching stable task-space motions to robots with goal convergence. Yet, IL techniques are affected by serious limitations when it comes to ensuring safety and fulfillment ...
Robot navigation methods allow mobile robots to operate in applications such as warehouses or hospitals. While the environment in which the robot operates imposes requirements on its navigation behavior, most existing methods do not allow the end-user to configure the robot's beh ...
We present a sampling-based model predictive control method that uses a generic physics simulator as the dynamical model. In particular, we propose a Model Predictive Path Integral controller (MPPI) that employs the GPU-parallelizable IsaacGym simulator to compute the forward dyn ...
This study investigates the impact of walking and e-hailing on the scale economies of on-demand mobility services. An analytical framework is developed to i) explicitly characterize the physical interactions between passengers and vehicles in the matching and pickup processes, an ...
Robots will increasingly operate near humans that introduce uncertainties in the motion planning problem due to their complex nature. Optimization-based planners typically avoid humans through collision avoidance chance constraints. This allows the planner to optimize performance ...

Biased-MPPI

Informing Sampling-Based Model Predictive Control by Fusing Ancillary Controllers

Motion planning for autonomous robots in dynamic environments poses numerous challenges due to uncertainties in the robot's dynamics and interaction with other agents. Sampling-based MPC approaches, such as Model Predictive Path Integral (MPPI) control, have shown promise in addr ...
Ground robots navigating in complex, dynamic environments must compute collision-free trajectories to avoid obstacles safely and efficiently. Nonconvex optimization is a popular method to compute a trajectory in real-time. However, these methods often converge to locally optimal ...
Task and Motion Planning (TAMP) has made strides in complex manipulation tasks, yet the execution robustness of the planned solutions remains overlooked. In this work, we propose a method for reactive TAMP to cope with runtime uncertainties and disturbances. We combine an Active ...