Circular Image

Javier Alonso-Mora

124 records found

Robots will increasingly operate near humans that introduce uncertainties in the motion planning problem due to their complex nature. Optimization-based planners typically avoid humans through collision avoidance chance constraints. This allows the planner to optimize performance ...
Navigating mobile robots in social environments remains a challenging task due to the intricacies of human-robot interactions. Most of the motion planners designed for crowded and dynamic environments focus on choosing the best velocity to reach the goal while avoiding collisions ...
We present a vehicle system capable of navigating safely and efficiently around Vulnerable Road Users (VRUs), such as pedestrians and cyclists. The system comprises key modules for environment perception, localization and mapping, motion planning, and control, integrated into a p ...
Navigation Among Movable Obstacles (NAMO) poses a challenge for traditional path-planning methods when obstacles block the path, requiring push actions to reach the goal. We propose a framework that enables movability-aware planning to overcome this challenge without relying on e ...
We present a sampling-based model predictive control method that uses a generic physics simulator as the dynamical model. In particular, we propose a Model Predictive Path Integral controller (MPPI) that employs the GPU-parallelizable IsaacGym simulator to compute the forward dyn ...
In this paper, we present an approach for fleet sizing in the context of flash delivery, a time-sensitive delivery service that requires the fulfilment of customer requests in minutes. Our approach effectively combines individual delivery requests into groups and generates optimi ...
This study investigates the impact of walking and e-hailing on the scale economies of on-demand mobility services. An analytical framework is developed to i) explicitly characterize the physical interactions between passengers and vehicles in the matching and pickup processes, an ...
Representing the 3D environment with instance-aware semantic and geometric information is crucial for interaction-aware robots in dynamic environments. Nevertheless, creating such a representation poses challenges due to sensor noise, instance segmentation and tracking errors, an ...
Control Barrier Functions (CBFs) have proven to be an effective tool for performing safe control synthesis for nonlinear systems. However, guaranteeing safety in the presence of disturbances and input constraints for high relative degree systems is a difficult problem. In this wo ...
Robot navigation methods allow mobile robots to operate in applications such as warehouses or hospitals. While the environment in which the robot operates imposes requirements on its navigation behavior, most existing methods do not allow the end-user to configure the robot's beh ...
Deployment of robots in dynamic environments requires reactive trajectory generation. While optimization-based methods, such as Model Predictive Control focus on constraint verificaction, Geometric Fabrics offer a computationally efficient way to generate trajectories that includ ...
To efficiently deploy robotic systems in society, mobile robots must move autonomously and safely through complex environments. Nonlinear model predictive control (MPC) methods provide a natural way to find a dynamically feasible trajectory through the environment without collidi ...
Mobile manipulators operating in dynamic environments shared with humans and robots must adapt in real time to environmental changes to complete their tasks effectively. While global planning methods are effective at considering the full task scope, they lack the computational ef ...

RACP

Risk-Aware Contingency Planning with Multi-Modal Predictions

For an autonomous vehicle to operate reliably within real-world traffic scenarios, it is imperative to assess the repercussions of its prospective actions by anticipating the uncertain intentions exhibited by other participants in the traffic environment. Driven by the pronounced ...
Smart cameras are an essential component in surveillance and monitoring applications, and they have been typically deployed in networks of fixed camera locations. The addition of mobile cameras, mounted on robots, can overcome some of the limitations of static networks such as bl ...
We study the problem of selecting a fleet of robots to service spatially distributed tasks with diverse requirements within time-windows. The problem of allocating tasks to a fleet of potentially heterogeneous robots and finding an optimal sequence for each robot is known as mult ...
Motion planning for autonomous robots in tight, interaction-rich, and mixed human-robot environments is challenging. State-of-the-art methods typically separate prediction and planning, predicting other agents’ trajectories first and then planning the ego agent’s motion in the re ...

Beyond the last mile

Different spatial strategies to integrate on-demand services into public transport in a simplified city

Integrating on-demand services into public transport networks might be the best way to face the current situation in which these new technologies have increased congestion in most cities. When cooperating with on-demand services rather than competing with them, public transport w ...
When designing a motion planner for autonomous robots there are usually multiple objectives to be considered. However, a cost function that yields the desired trade-off between objectives is not easily obtainable. A common technique across many applications is to use a weighted s ...
Ride-sourcing companies have worsened congestion in numerous cities worldwide, as many users are attracted from more sustainable modes. To reverse this trend, it is crucial to leverage the technology of connecting users and vehicles online and use it to strengthen public transpor ...