Circular Image

J. Alonso-Mora

111 records found

Representing the 3D environment with instance-aware semantic and geometric information is crucial for interaction-aware robots in dynamic environments. Nevertheless, creating such a representation poses challenges due to sensor noise, instance segmentation and tracking errors, an ...
This study investigates the impact of walking and e-hailing on the scale economies of on-demand mobility services. An analytical framework is developed to i) explicitly characterize the physical interactions between passengers and vehicles in the matching and pickup processes, an ...

RACP

Risk-Aware Contingency Planning with Multi-Modal Predictions

For an autonomous vehicle to operate reliably within real-world traffic scenarios, it is imperative to assess the repercussions of its prospective actions by anticipating the uncertain intentions exhibited by other participants in the traffic environment. Driven by the pronounced ...
Many problems in robotics seek to simultaneously optimize several competing objectives. A conventional approach is to create a single cost function comprised of the weighted sum of the individual objectives. Solutions to this scalarized optimization problem are Pareto optimal sol ...
On-demand ridepooling (ODRP) vehicles follow routes that are fully flexible. However, when the system does not provide door-to-door service and users can be asked to walk, their paths tend to concentrate, particularly along main streets that connect highly demanded areas of the c ...
Risk assessment is a crucial component of collision warning and avoidance systems for intelligent vehicles. Reachability-based formal approaches have been developed to ensure driving safety to accurately detect potential vehicle collisions. However, they suffer from over-conserva ...
In this paper, we address the problem of real-time motion planning for multiple robotic manipulators that operate in close proximity. We build upon the concept of dynamic fabrics and extend them to multi-robot systems, referred to as Multi-Robot Dynamic Fabrics (MRDF). This geome ...
Contingency planning, wherein an agent generates a set of possible plans conditioned on the outcome of an uncertain event, is an increasingly popular way for robots to act under uncertainty. In this work we take a game-theoretic perspective on contingency planning, tailored to mu ...
We study the problem of selecting a fleet of robots to service spatially distributed tasks with diverse requirements within time-windows. The problem of allocating tasks to a fleet of potentially heterogeneous robots and finding an optimal sequence for each robot is known as mult ...

Biased-MPPI

Informing Sampling-Based Model Predictive Control by Fusing Ancillary Controllers

Motion planning for autonomous robots in dynamic environments poses numerous challenges due to uncertainties in the robot's dynamics and interaction with other agents. Sampling-based MPC approaches, such as Model Predictive Path Integral (MPPI) control, have shown promise in addr ...
Control Barrier Functions (CBFs) that provide formal safety guarantees have been widely used for safety-critical systems. However, it is non-trivial to design a CBF. Utilizing neural networks as CBFs has shown great success, but it necessitates their certification as CBFs. In thi ...
Ground robots navigating in complex, dynamic environments must compute collision-free trajectories to avoid obstacles safely and efficiently. Nonconvex optimization is a popular method to compute a trajectory in real-time. However, these methods often converge to locally optimal ...
Autonomous mobile robots require predictions of human motion to plan a safe trajectory that avoids them. Because human motion cannot be predicted exactly, future trajectories are typically inferred from real-world data via learning-based approximations. These approximations provi ...
Motion planning for autonomous robots in tight, interaction-rich, and mixed human-robot environments is challenging. State-of-the-art methods typically separate prediction and planning, predicting other agents’ trajectories first and then planning the ego agent’s motion in the re ...

Beyond the last mile

Different spatial strategies to integrate on-demand services into public transport in a simplified city

Integrating on-demand services into public transport networks might be the best way to face the current situation in which these new technologies have increased congestion in most cities. When cooperating with on-demand services rather than competing with them, public transport w ...
We study the problem of finding statistically distinct plans for stochastic task assignment problems such as online multi-robot pickup and delivery (MRPD) when facing multiple competing objectives. In many real-world settings robot fleets do not only need to fulfil delivery reque ...
Ride-sourcing companies have worsened congestion in numerous cities worldwide, as many users are attracted from more sustainable modes. To reverse this trend, it is crucial to leverage the technology of connecting users and vehicles online and use it to strengthen public transpor ...
This paper proposes a decentralized trajectory planning framework for the collision avoidance problem of multiple micro aerial vehicles (MAVs) in environments with static and dynamic obstacles. The framework utilizes spatiotemporal occupancy grid maps (SOGM), which forecast the o ...
This work formally defines the problem of fleet sizing with delays (FSD), where the option of delaying individual tasks within fleet sizing is considered. We prove that the FSD problem is NP-hard and solve a formulation of the FSD problem as a mixed integer linear problem (MILP). ...
Task and Motion Planning (TAMP) has made strides in complex manipulation tasks, yet the execution robustness of the planned solutions remains overlooked. In this work, we propose a method for reactive TAMP to cope with runtime uncertainties and disturbances. We combine an Active ...