Circular Image

R. Babuska

424 records found

ILeSiA

Interactive Learning of Robot Situational Awareness From Camera Input

Learning from demonstration is a promising approach for teaching robots new skills. However, a central challenge in the execution of acquired skills is the ability to recognize faults and prevent failures. This is essential because demonstrations typically cover only a limited se ...

SmartAlert

Machine learning-based patient-ventilator asynchrony detection system in intensive care units

Background and Objective: Patient-ventilator asynchronies (PVA) are associated with ventilator-induced lung injury and increased mortality. Current detection methods rely on static thresholds, extensive preprocessing, or proprietary ventilator data. This study aimed to develop an ...
To efficiently deploy robotic systems in society, mobile robots must move autonomously and safely through complex environments. Nonlinear model predictive control (MPC) methods provide a natural way to find a dynamically feasible trajectory through the environment without collidi ...
Symbolic regression is a technique that can automatically derive analytic models from data. Traditionally, symbolic regression has been implemented primarily through genetic programming that evolves populations of candidate solutions sampled by genetic operators, crossover and mu ...

Engine Agnostic Graph Environments for Robotics (EAGERx)

A Graph-Based Framework for Sim2real Robot Learning

Sim2real, that is, the transfer of learned control policies from simulation to the real world, is an area of growing interest in robotics because of its potential to efficiently handle complex tasks. The sim2real approach faces challenges because of mismatches between simulation ...

REX

GPU-Accelerated Sim2Real Framework with Delay and Dynamics Estimation

Sim2real, the transfer of control policies from simulation to the real world, is crucial for efficiently solving robotic tasks without the risks associated with real-world learning. How-ever, discrepancies between simulated and real environments, especially due to unmodeled dynam ...
Formulating the dynamics of continuously deformable objects and other mechanical systems analytically from first principles is an exceedingly challenging task, often impractical in real-world scenarios. What makes this challenge even harder to solve is that, usually, the object h ...
As large language models (LLMs) permeate more and more applications, an assessment of their associated security risks becomes increasingly necessary. The potential for exploitation by malicious actors, ranging from disinformation to data breaches and reputation damage, is substan ...
Currently, truss tomato weighing and packaging require significant manual work. The main obstacle to automation lies in the difficulty of developing a reliable robotic grasping system for already harvested trusses. We propose a method to grasp trusses that are stacked in a crate ...

SymFormer

End-to-End Symbolic Regression Using Transformer-Based Architecture

Many real-world systems can be naturally described by mathematical formulas. The task of automatically constructing formulas to fit observed data is called symbolic regression. Evolutionary methods such as genetic programming have been commonly used to solve symbolic regression t ...

Toward Physically Plausible Data-Driven Models

A Novel Neural Network Approach to Symbolic Regression

Many real-world systems can be described by mathematical models that are human-comprehensible, easy to analyze and help explain the system's behavior. Symbolic regression is a method that can automatically generate such models from data. Historically, symbolic regression has been ...

Imitrob

Imitation Learning Dataset for Training and Evaluating 6D Object Pose Estimators

This letter introduces a dataset for training and evaluating methods for 6D pose estimation of hand-held tools in task demonstrations captured by a standard RGB camera. Despite the significant progress of 6D pose estimation methods, their performance is usually limited for heavil ...

ViewFormer

NeRF-Free Neural Rendering from Few Images Using Transformers

Novel view synthesis is a long-standing problem. In this work, we consider a variant of the problem where we are given only a few context views sparsely covering a scene or an object. The goal is to predict novel viewpoints in the scene, which requires learning priors. The curren ...
Sensing the shape of continuum soft robots without obstructing their movements and modifying their natural softness requires innovative solutions. This letter proposes to use magnetic sensors fully integrated into the robot to achieve proprioception. Magnetic sensors are compact, ...
Search missions require motion planning and navigation methods for information gathering that continuously replan based on new observations of the robot's surroundings. Current methods for information gathering, such as Monte Carlo Tree Search, are capable of reasoning over long ...
Existing Deep Learning (DL) frameworks typically do not provide ready-to-use solutions for robotics, where very specific learning, reasoning, and embodiment problems exist. Their relatively steep learning curve and the different methodologies employed by DL compared to traditiona ...
Landing a quadrotor on an inclined surface is a challenging maneuver. The final state of any inclined landing trajectory is not an equilibrium, which precludes the use of most conventional control methods. We propose a deep reinforcement learning approach to design an autonomous ...
Autonomous mobile robots are becoming increasingly important in many industrial and domestic environments. Dealing with unforeseen situations is a difficult problem that must be tackled to achieve long-term robot autonomy. In vision-based localization and navigation methods, one ...
Virtually all robot control methods benefit from the availability of an accurate mathematical model of the robot. However, obtaining a sufficient amount of informative data for constructing dynamic models can be difficult, especially when the models are to be learned during robot ...