Circular Image

B. Shyrokau

71 records found

Bio-inspired control systems attract significant interest in the scientific community. The advantage of neural systems lies in their ability to adapt to control processes. Path-following tasks in automated vehicles and advanced driver assistance systems are an essential component ...
This paper presents a novel approach integrating motion replanning, path tracking and vehicle stability for collision avoidance using nonlinear Model Predictive Contouring Control. Employing torque vectoring capabilities, the proposed controller is able to stabilise the vehicle i ...

Geographically Distributed Test Environment

Validation of Integrated Motion Control of Multi-Actuated Electric Vehicle

As an example of a geographically distributed test environment, an integrated motion control system for multi-actuated electric vehicles has been proposed and evaluated. This system unifies three active subsystems: drive-by-wire propulsion with independent in-wheel electric motor ...

Efficient Motion Sickness Assessment

Recreation of On-Road Driving on a Compact Test Track

The ability to engage in other activities during the ride is considered by consumers as one of the key reasons for the adoption of automated vehicles. However, engagement in non-driving activities will provoke occupants’ motion sickness, deteriorating their overall comfort and th ...
We present a vehicle system capable of navigating safely and efficiently around Vulnerable Road Users (VRUs), such as pedestrians and cyclists. The system comprises key modules for environment perception, localization and mapping, motion planning, and control, integrated into a p ...
Driving simulators aim to replicate real-world vehicle experiences by recreating accelerations acting on occupants using a combination of translational accelerations and tilt-coordination. Due to space constraints, translational accelerations alone are insufficient, and platform ...
This paper presents a novel approach to automated drifting with a standard passenger vehicle, which involves a Nonlinear Model Predictive Control to stabilise and maintain the vehicle at high sideslip angle conditions. The proposed controller architecture is split into three comp ...
The emergence of new electric vehicle (EV) corner concepts with in-wheel motors offers numerous opportunities to improve handling, comfort, and stability. This study investigates the potential of controlling the vehicle's corner positioning by changing wheel toe and camber angles ...
This paper proposes a novel vehicle sideslip angle estimator, which uses the physical knowledge from an Unscented Kalman Filter (UKF) based on a non-linear single-track vehicle model to enhance the estimation accuracy of a Convolutional Neural Network (CNN). The model-based and d ...
This paper presents a novel Learning-based Model Predictive Contouring Control (L-MPCC) algorithm for evasive manoeuvres at the limit of handling. The algorithm uses the Student-t Process (STP) to minimise model mismatches and uncertainties online. The proposed STP captures the m ...
This paper proposes a non-linear Model Predictive Contouring Control (MPCC) for obstacle avoidance in automated vehicles driven at the limit of handling. The proposed controller integrates motion planning, path tracking and vehicle stability objectives, prioritising obstacle avoi ...
This paper presents an original approach to vehicle obstacle avoidance. It involves the development of a nonlinear Model Predictive Contouring Control, which uses torque vectoring to stabilise and drive the vehicle in evasive manoeuvres at the limit of handling. The proposed algo ...
The acceptance of automated driving is under the potential threat of motion sickness. It hinders the passengers' willingness to perform secondary activities. In order to mitigate motion sickness in automated vehicles, we propose an optimization-based motion planning algorithm tha ...
Integrated chassis control systems represent a significant advancement in the dynamics of ground vehicles, aimed at enhancing overall performance, comfort, handling, and stability. As vehicles transition from internal combustion to electric platforms, integrated chassis control s ...

Vibration-Induced Discomfort in Vehicles

A Comparative Evaluation Approach for Enhancing Comfort and Ride Quality

This article introduces a methodology for conducting comparative evaluations of vibration-induced discomfort. The aim is to outline a procedure specifically focused on assessing and comparing the discomfort caused by vibrations. The article emphasizes the metrics that can effecti ...
Model predictive control (MPC) is a promising technique for motion cueing in driving simulators, but its high computation time limits widespread real-time application. This paper proposes a hybrid algorithm that combines filter-based and MPC-based techniques to improve specific f ...
This paper presents an innovative combined control using Model Predictive Control (MPC) to enhance the stability of automated vehicles. It integrates path tracking and vehicle stability control into a single controller to satisfy both objectives. The stability enhancement is achi ...
A prime concern for automated vehicles is motion comfort, as an uncomfortable ride may reduce acceptance of the technology amongst the general population. However, it is not clear how transient motions typical for travelling by car affect the experience of comfort. Here, we deter ...
Driving simulators have been used in the automotive industry for many years because of their ability to perform tests in a safe, reproducible and controlled immersive virtual environment. The improved performance of the simulator and its ability to recreate in-vehicle experience ...
To achieve optimal robot behavior in dynamic scenarios we need to consider complex dynamics in a predictive manner. In the vehicle dynamics community, it is well know that to achieve time-optimal driving on low friction surface, the vehicle should utilize drifting. Hence, many au ...