Search-based task and motion planning for hybrid systems

Agile autonomous vehicles

Journal Article (2023)
Authors

Z. Ajanović (TU Delft - Learning & Autonomous Control, Pavia University)

Enrico Regolin (Pavia University)

B. Shyrokau (TU Delft - Intelligent Vehicles)

Hana Ćatić (University of Sarajevo)

Martin Horn (Graz University of Technology)

Antonella Ferrara (Pavia University)

Research Group
Learning & Autonomous Control
Copyright
© 2023 Z. Ajanović, Enrico Regolin, B. Shyrokau, Hana Ćatić, Martin Horn, Antonella Ferrara
To reference this document use:
https://doi.org/10.1016/j.engappai.2023.105893
More Info
expand_more
Publication Year
2023
Language
English
Copyright
© 2023 Z. Ajanović, Enrico Regolin, B. Shyrokau, Hana Ćatić, Martin Horn, Antonella Ferrara
Research Group
Learning & Autonomous Control
Volume number
121
DOI:
https://doi.org/10.1016/j.engappai.2023.105893
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

To achieve optimal robot behavior in dynamic scenarios we need to consider complex dynamics in a predictive manner. In the vehicle dynamics community, it is well know that to achieve time-optimal driving on low friction surface, the vehicle should utilize drifting. Hence, many authors have devised rules to split circuits and employ drifting on some segments. These rules are suboptimal and do not generalize to arbitrary circuit shapes (e.g., S-like curves). So, the question “When to go into which mode and how to drive in it?” remains unanswered. To choose the suitable mode (discrete decision), the algorithm needs information about the feasibility of different modes (continuous motion). This makes it a class of Task and Motion Planning (TAMP) problems, which are known to be hard to solve optimally in real-time. In the AI planning community, search methods are commonly used. However, they cannot be directly applied to TAMP problems due to the continuous component. Here, we present a search-based method that effectively solves this problem and efficiently searches in a highly dimensional state space with nonlinear and unstable dynamics. The space of the possible trajectories is explored by sampling different combinations of motion primitives guided by the search. Our approach allows to use multiple locally approximated models to generate motion primitives (e.g., learned models of drifting) and effectively simplify the problem without losing accuracy. The algorithm performance is evaluated in simulated driving on a mixed-track with segments of different curvatures (right and left). Our code is available at https://git.io/JenvB.