A hierarchic isogeometric hyperelastic solid-shell

Journal Article (2024)
Author(s)

Leonardo Leonetti (University of Calabria, Ho Chi Minh City University of Technology (HCMUT))

Hugo M Verhelst (TU Delft - Ship and Offshore Structures, TU Delft - Numerical Analysis)

Research Group
Numerical Analysis
Copyright
© 2024 Leonardo Leonetti, H.M. Verhelst
DOI related publication
https://doi.org/10.1007/s00466-024-02452-w
More Info
expand_more
Publication Year
2024
Language
English
Copyright
© 2024 Leonardo Leonetti, H.M. Verhelst
Research Group
Numerical Analysis
Issue number
3
Volume number
74
Pages (from-to)
723-742
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

The present study aims to develop an original solid-like shell element for large deformation analysis of hyperelastic shell structures in the context of isogeometric analysis (IGA). The presented model includes a new variable to describe the thickness change of the shell and allows for the application of unmodified three-dimensional constitutive laws defined in curvilinear coordinate systems and the analysis of variable thickness shells. In this way, the thickness locking affecting standard solid-shell-like models is cured by enhancing the thickness strain by exploiting a hierarchical approach, allowing linear transversal strains. Furthermore, a patch-wise reduced integration scheme is adopted for computational efficiency reasons and to annihilate shear and membrane locking. In addition, the Mixed-Integration Point (MIP) format is extended to hyperelastic materials to improve the convergence behaviour, hence the efficiency, in Newton iterations. Using benchmark problems, it is shown that the proposed model is reliable and resolves locking issues that were present in the previously published isogeometric solid-shell formulations.