Wideband Multi-Mode Leaky-Wave Feed for Scanning Lens Phased Array at Submillimeter Wavelengths

More Info
expand_more

Abstract

In this article, we propose a hybrid electromechanical scanning lens antenna array architecture suitable for the steering of highly directive beams at submillimeter wavelengths with field-of-views (FoV) of ±25°. The concept relies on combining electronic phase shifting of a sparse array with a mechanical translation of a lens array. The use of a sparse-phased array significantly simplifies the RF front-end (number of active components, routing, thermal problems), while the translation of a lens array steers the element patterns to angles off-broadside, reducing the impact of grating lobes over a wide FoV. The mechanical translation required for the lens array is also significantly reduced compared to a single large lens, leading to faster and low-power mechanical implementation. In order to achieve wide bandwidth and large steering angles, a novel leaky wave lens feed concept is also implemented. A 550-GHz prototype was fabricated and measured demonstrating the scanning capabilities of the embedded element pattern and the radiation performance of the leaky wave fed antenna.

Files

09258997.pdf
(pdf | 1.88 Mb)

Download not available

Wideband_Multimode_Leaky_Wave_... (pdf)
(pdf | 4.15 Mb)
- Embargo expired in 20-10-2022